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1. Introduction

This supplement to the annual report consists of the following printed
table of contents and a set of microfiche containing all papers and theses
produced with JSEP support and published during the period April 1, 1983
through March 31, 1984.

This form of reporting is modelled after that introduced by the Stanford
Electronics Laboratories for the same purpose. The result is a compact pre-
sentation of a large quantity of information which can be produced much more
economically than printing. On the other hand, it is realized that microfiche
is less convenient than a printed document. Therefore, those who are
interested in particular reprints may contact R.W. Schafer to request a zerOK
copy of any of the listed papers.

n1. List of Reprints

The reprints are organized by work unit as in the combined Annual/Final
Report on this contract. Numbers in parenthesis indicate reference to fiche
number and page. The page numbers are coded to the work unit numbers. Note
that fiche #7 contains this printed index.

*2.1 TN-DIIBIOUL SIWL PROCSING AMD STVAtQ

9O#1 Constrained iterative Signal lestoration Algorithms
LR. Nesereau and .W. Schafer

A.G. Katsaggelos and R.W. Schafer, "Iterative Deconvolution Using
Several Different Distorted Versions of an Unknown Signal," Proc. 1983
rnt. Conf. on Acoustics, Speech, and Signal Processing, Boston, pp.
659-662, April 1983. (Fiche #1, pp. 1-1 to 1-4.)

M.H. Hayes and R.W. Schafer, "On the Bandlimited Extrapolation of
Discrete Signals," Proc. 1983 Int. Conf. on Acoustics, Speech, and
Signal Processing, Boston, pp. 1450-1453, April 1983. (Fiche #1, pp.
1-5 to 1-8.)

I02 Spectrum Analysis and Parametric Mdelling
LW. Schafer and R.N rereau 

R.M. ersereau, E.W. Brown, and A. Guessoum, "Roy-Column Algorithms
*for the Evaluation of Multidimensional DFTs on Arbitrary Periodic

Sampling Lattices," Proc. IEZE Int. Conf. on Acoustics, Speech, and
Signal Processing, pp. 1264-1267, Apr. 1983. (Fiche #1, pp. 2-1 to
2-4.)

R.M. Nersereau, *Dimensionality Changing Transformation with Non-
Rectangular Sampling Strategies," in Transformations in Optics,
(Rhodes, Saleh, Fienup, ads.) SPIN Bellingham, 1983 (invited). (Fiche
#I, pp. 2-5 to 2-9.)

A. Guessoum, *Fast Algorithms for the Multidimensional Discrete
Fourier Transform," Ph.D. Thesis, Georgia Institute of Technology,
March 1984. (Fiche #1, pp. 2-10 to 2-90 and Fiche #2 pp. 2-91 to
2-170.)
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e.6

S.3. Lim, 'Generalization of One-Dimensional Algorithms for the
Evaluation of Multidimensional Circular Convolutions and DFTs," 1.S.
Thesis, Georgia institute of Technology, December 1983. (Fiche #2,
pp. 2-171 to 2-188 and Fiche #3, pp. 2-189 to 2-284.)

P.A. aragos, R.N. ersereau, and R.W. Schafer, "Two-Dimensional
Linear Predictive Analysis of Arbitrarily Shaped Regions," Proc. IEED
Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 104-107,
Apr. 1983. (Fiche #4, pp. 2-285 to 2-288.)

ei3 Signal 3.c,,struction Fram Partial Phase and Magnitude Information
IL. me.s

P.L. Van Hove, M.H. Hayes, 3.9. Lim, and A.V. Oppenheim, "Signal

Reconstruction from Signed Fourier Transform Magnitude," IEE Trans.
Acoust., Speech, and Signal Processing, ASSP-31, pp. 1286-1293, Oct.
1983. (Fiche #4, pp. 3-1 to 3-8.)

14.H. Hayes and T.F. Quatieri, "Recursive Phase Retrieval Using
Boundary Conditions," 3. Opt. Soc. An., Vol. 73, pp. 1427-1433, Nov.
1983. (Fiche #4, pp. 3-9 to 3-15.)

N.H. Hayes, *The Representation of Signals in Terms of Spectral
Amplitude," Proc. 1983 Int. Conf. on Acoust., Speech, and Signal
Processing, pp. 1446-1449, April 1983. (Fiche #4, pp. 3-16 to 3-19.)

W0#4 Multiprocessor Architectures for Digital Signal Processing
T.P. Barnwell, III".

"Optimal Implementation of Flow Graphs on Synchronous Multi-
processors," T.P. Barnwell, I1, and D.A. Schwartz, Proceedings of
Asilomar Conference on Circuits and Systems, November 1983. (Fiche
#4, pp. 4-1 to 4-7.)

U#5 To-Dinsional Optical Storage and Processing
T. . Gaylord

Moharma, M. G. and Gaylord, T. K., "Rigorous Coupled-Wave Analysis of
Grating Diffraction -- 9 Mode Polarization and Losses," Journal of the -"-

Optical Society of America, vol. 73, pp. 451-455, April 1983. (Fiche
#4, pp. 5-1 to 5-5.)

Hoharam, M. G. and Gaylord, T. K., "Three-Dimensional Vector Coupled-
Wave Analysis of Planar-Grating Diffraction," Journal of the Optical
Society of America, vol. 73, pp. 1105-1112, September 1983. (Fiche
#4, pp 5-6 to 5-13.)

Baird, W. E., Moharam, M. G., and Gaylord, T. K., "Diffraction
Characteristics of Planar Absorption Gratings," Applied Physics B,
vol. 32, pp. 15-20, September 1983. (Fiche #4, pp. 5-14 to 5-19.)

Moharam, M. G., Gaylord, T. K., SincerboK, G. T., Werlich, H. and
Yung, B., "Diffraction Characteristics of Surface-Relief Dielectric
Gratings," (Abstract) Journal of the Optical Society of America, vol.
73, pg. 1941, December 1983. (Fiche #4, pp. 5-20.)
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Moharam, M. G. and Gaylord, T. K., "Diffraction of Finite Beams by Di-
electric Gratings,' (Abstract) Journal of the Optical Society of
America, vol. 73, pg. 1941, December 1983. (Fiche #4, pp. 5-20.)

Mirsalehi, K. K., Guest, C. C., and Gaylord, T. K., "Optical Truth-
Table Look-Up Processing of Digital Data,O (Abstract) Journal of the
Optical Society of America, vol. 73, pg. 1951, December 1983. (Fiche
#4, pp. 5-21.)

Baird, W. N., Gaylord, T. K., and M4oharam, N. G., "Diffraction
Efficiencies of Transmission Absorption Gratings'o (Abstract) Journal
of the Optical Society of America, vol. 73, pg. 1889, December 1983.
(Fiche #4, pp. 5-22.)

Mirsalehi, M. M., Guest, C. C., and Gaylord, T. K., 'Residue Number
system Holographic Truth-Table Look-Up Processing: Detector Threshold
Setting and Probability of Error Due to Amplitude and Phase
Variations,O Applied Optics, vol. 22, pp. 3583-3592, November 15,
1983. (Fiche #4, pp. 5-23 to S-32.)

Guest, C.C., 'Holographic Optical Digital Parallel Processing," Ph.D.
Thesis, Georgia Institute of Technology, November 1983. (Fiche #4,

-pp. 5-33 to 5-68 and Fiche #5, pp. 5-69 to 5-166 and Fiche 96, pp.
5-167 to 5-184.)

SI Hybrid Optical/Digital Signal Processing
,.T. Nhodes

J.N. Mait and W.T. Rhodes, "Dependent and Independent Constraints for
a Multiple Objective Iterative Algorithm," in Signal Recovery and
Synthesis with Incomplete Information and Partial Constraints
(Technical Digest) (Optical Society of America, 1983), pp. THA14-1
through TH14-4. (Fiche #6, pp. 6-1 to 6-4.)

W.T. Rhodes, A. Tarasevich, and N. Zepkin, "Complex Covariance Matrix
Inversion with a Resonant Electro-Optic Processor,' in Two-Dimensional
Image and Signal Processing, G. Morris, ed. (Proc. SPIN, Vol. 388,
1983), pp. 197-204. (Fiche #6, pp. 6-5 to 6-12.)

W.T. Rhodes and M. Xoizumi, "Image Enhancement by Partially Coherent
Imaging," in Proceedings of the 10th International Optical Computing
Conference (IEEE Computer Society, 1983, IEEE Order No. 83CH1880-4),
pp. 32-35. (Fiche #6, pp. 6-13 to 6-16.)

r. .

W.T. Rhodes, 'Hybrid Time- and Space-Integration Method for Computer
Holography," in International Conference on Computer-Generated Eolo-
graphy, S. Lee, ed. (Proc. SPIN, Vol. 437, 1983), pp. xx-xx. (Fiche
#6, pp. 6-17 to 6-22.)
W.T. Rhodes, "Acousto-Optic Algebraic Processors,' in Real-Tine Signal
Processing VI, K. Bromley, ed. (Proc. SPIN, Vol. 431, 1983), pp. xx-
xx. (Fiche #6, pp. 6-23 to 6-33.)

N.J. Caulfield, J.A. Neff, and W.T. Rhodes, 'Optical Computing: The
Coming Revolution in Optical Signal Processing,' Laser Focus/Electro-
Optics Magazine, November 1983, pp. 100-110 (invited). (Fiche #6, pp.
6-34 to 6-42.) 7
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10#7 3l1ctrmagnetic Measuremnts in the Time omain
6.5. Smith

G.S. Smith and L.N. An, "Loop Antennas for Directive Transmission into
a Material Half Space," Radio Science, vol. 18, no. 5, pp. 664-674,
Sept.-Oct. 1983. (Fiche 7, pp. 7-1 to 7-11.)

H.I. Bassen and G.S. Smith, "Electric Field Probes - A Review,"
(Invited Paper), IEEE Trans. Antennas and Propagation, vol. AP-31, no.

5, pp. 710-718, Sept. 1983. (Fiche 7, pp. 7-12 to 7-20.)

G.S. Smith, "Directive Properties of Antennas for Transmission into a
Material Half Space,O IEEE Trans. Antennas and Propagation, vol. AP-
32, no. 3, pp. 232-246, March 1984. (Also presented at the 1983 IEEE
Antennas and Propagation Society International Symposium and National
Radio Science Meeting (URSI), Houston, TX, pg. 7, May 1983.) (Fiche
#7, pp. 7-21 to 7-35.)

G.S. Smith, OLimitations on the Size of Miniature Electric Field
Probes," IEEE Trans. Microwave Theory and Techniques, volume MIT-32,
no. 6, pp. 594-600, June 1984. (Fiche V7, pp. 7-36 to 7-42.)

G.S. Smith, "Loop Antennas,O in Antenna Engineering Handbook, (R.C.
3ohnson and H. Jasik, 3ds., New York: McGraw-Hill, pp. 5-1 to 5-24,
1984. (Fiche #7, pp. 7-43 to 7-67.)

EM Amtomated Radiation Measremnuts for Near and Far-Field

Transformations
LB.. oy

V.V. 3ory, E.B. Joy, and N.M. Leach, Jr., *Current Antenna Near-Field
Measurement Research at the Georgia Institute of Technology,.
Proceedings of the 13th European Microwave Conference, Nurnberg, West
Germany, September 5-8, 1983, pp. 8-23, 8-28. Fiche #7, pp. 8-1 to
8-6.)

N.D. Joy, "Spherical Surface mear-Field Measurements," Proceedings of
the Antenna Measurement Techniques Association 1983 Meeting,
Annapolis, MD, September 27-29, 1983, pp. 23-1, 23-8. (Fiche #7, pp.
8-7 to 8-12.)

The last five pages of Fiche #7 contain the above list of
publications.

.

.'.

-:.<*- ; - - .* .: . .2 ' X



ITERATIE U(CUMIII1IUC tUSIIIC. StEERL DI[FERE(? ULriugTN VEi(S1i0S

OF AN UPvWOudS SIGAAL*

AggeloS 14. KitSaggeloS and Rtonald W. SChafer

School of Electrical Engineering
Georgia Institute of Technology

Atlanta. Georgia 303j2

ABSTMIC aJ 'v frequency domain notation. If A:-,
I (.' represent the Fourier transform . -,

lnt raper analyses the error benavior of or$9.-'vJ and restored signal after k itt, ,:i.v-
Otrtve deconvol.tiol algortthvs when tne dis- retpi,'Ively. then it is easily Shown that

rct~ Systemi "as a frequency response tnat "as W
te.:ativn real pert or has a finite~ nueober of h, N-4 4 I-~
'J'al.e8 zeros. the existence of Lte. zeroi, at it W. ~

a f'n't~ n..-ber of discrete fr..tjencie" resiglts

nai nabiility of *nke decOnvolitton il-)Olthmi to where ,i.3and R(.) represent the Fo.jri,, t

Vq~tar.. the lost ;for--at iOn at the . f~tqeft.en'S form iUf tnt impulse response of the~
.- *n a small nismoer of tterait'.n... .A new Dlorring system and it$ appr., r,.

3'5.rithm is usu;te that 4ncorp,-,tes ,tiile respectively. w

I ~ ~ vs,3rtea vrslons of the signal a,,. *e.t i a
estpr~tt-on error that approicne. ...*ro u'tn a Using the &asei notation, the spec -

flu,.-Oer of iterations. the restoration error of the k-tn iters*
tie writtenl as

tR,$COwilkAINED ITERATIVE DCCONIV.U1TIiAL.MC)£()*()lik~J

In general an appropriate wat'tazi-ai re- FroN equat'u4 (4) we v~osce-. that
;,tseitation for a distorting system s,

y . 3 2 I'm) Niii .. I()v(
Wi*t-e A Is the jninow'I 'input Osi~ t. y is the i
k":w-. ouitput signal and S is a enlnd'stortion k*-

Operator or transfor-stion. A ste"daro~ technique whenever
13' findling a sol.&t'on to Eq. 11a) Is based upon
too Iteration 0416ua0 11 ) - A ~(d , . /T (7)

In this case the Iteration can be gua-iviteed to
where I tS. the identi6ty operator and . is a con- coniverg to a un que solution ',Ij. ;t - as...m1ed
velienCe parameter that muist be chosen. that hi.) app,4ox'ftat&S Pi(.) as close i% possible.I So that their ratio approaches ane. s0 that

Forl the class of linear snift invariant according to equation ($3, the ter,,. Spectrum
di stort ions approaches zero.

^nj x(n3 ca-i be found iteratively ow5ing the At frequencies where ;(.)-u . lnequil-ty (lj

ilgorithm. *Is not satisfied (the operator (1- !0) is not a
a 0(n) * h(-n) * A~n) contraction anymore out it is simply noneapansive

LJ. In this case it can be seen from equation
~ (J~~(n..(-n. y~n.in)@~()~(3) 4 that ik~w)-O. at these frequencies and

* dnctscovoltia. *dentesco~e' according to equation (53. Ek(-I'A1 
3
* Tnus.

~0*siev onouiet dnts ope with an infinite number of Iteration, :". con-
conJugation and ;(n) denotes an approximation to tinuovs error Spiectrue will approach zero every.
tftt Impulse response of the distorting or bliarr- wvhere Sacept for a finite numb'er of frequencies
1n9 systeM ht. Tis$ algorithmi is henceforth re- where WW.3v . At this discrete set of
forrto. to as algoritta 01. The convolution frequencies the error spectrue is equal to the
With ht (-ft) In the above algorithit has been in- signal spectrum. It can be argued that becaute
ciudod In order to ensure convergence of the the error spectrum OtffVers from zero on a set of

thiswor va supored he Do~t Srvies ero, measure perfect restoration can be achieved

1 014 rk lcs srogram edr h ontSrie with an Infinite number of Iterationst LI. In

allaithat ohen the Fowlier transfor* of ;(ft) htas
a negative real Park-tI].
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practical ImplementatiOes though. only a finite

n.ire of ittrations can be COnSidered. I" this
case the error spectrum has the form Of a train (n)*.

of p.-lses centered on the locations af the Zeros
of n .)( and for the common case of periodic
pulse-.i(.) has equally spaced zeros) the *A"( y ~ (n
resjlting error in the time domain has a periodic - • -inature.

where convolution with h (-n) and I*(.n) ha,
Thus. accOrding to the above discussion the been included a in In oioef to eniure con-

pissing of the ovilir.ol input signal through the ver.ence of the algorithdo when the Fourier
"I.ring systen. resultS in absolute loss of tranoform if h(n) and ~(nj a, nnt hae1

,-i ifaT'.n at frequencies -here d.).U , so that oinnegdtive real parts. .e refer to t s
t , ,r ).-rence of the unconstralnea iterative algorit"h, as a9otr sk.

* :.v)
1
h,'J",i Al9 orith-n is SIwe O')O. In irder

t3 % ; , . "ie coniergence of the algorit.nm this in this case using freqien:y dooa'n notit-on
1,-' *of)--atso.n nist be Incorporated in the it can e snhwn that

. 01.,,trate the above result, cohsiaer an ! )  
,

apU3at~ei to the impulse response of the I M

.,St tn; s%,Stem Ot tne form

;.n)-1.
R 
'o

U * other-is-where li, to . :di( ~. rCejrtSent tneF ., ter tra, sfc n of tne Impulse response of the

-D -o-%e (a, its inhloj counterpart) Dlur *n, sYsLem and its apprOinat iun.

s. A -. -, "lel fur -Pany ;fnjSical ,1jtortions; re ,pecttvely.
-' n blur in "Iale,. The

• (M416; Nas convolved witn an From Eq. l ) it is easily sern that

°). f tre fOrm wmen n.j.- and i(.) hate no covn Zeros. the

torm I Side the 'bracets can al.ajs be made less

n,. *: -~v.)'!n* 1 9) than one. with approp"ate choice of the

araineters " and I and consequently i"
F,;. ,:a %ns the s:.-ctrum of ,(n) and Fig. appoaces Ara f !It frequencies when raised
.D; , :qe s, etri . of the restored sighal t) the k.1) power for a large nember of

aftr J.),, I.erations (h(m)j -{(ni and .-I.b). iterations. Conceptually this means that the

The e0icrse of the periodc zeros is very insiJmation of the original spectrum 1(.) that IS
leaolj ts... The -esjlt pg re~toratibon error lOst at the frequencies nwere .i() is zero. is

. , *r" a- ,.n iF ig. 1'1 ) and P(01. rovlded to the aijorith by h ( ) n vice"

versa. Taus, the alprithe desCribea by Eg. (11)

c)neerges to a unique solution such faster than

A NEW ITERATIVE ULCuhv(4uIIlion ALGITIm tnt! al.qo-tnm Cescrioed by Eq. t4). and the %Lec-

tri of the restored signal 1,(.) is smootner.

'he oaiC Ilea tehlini the ;ropised new The restoration error that resilts with the

1terati.. ae:onvolution altrlthnm Is the inCOr. applicatLin of the algorithm *Z has a fors that

pc',:.,.n of tne lost i-formation at the specific is t.te %,perpoition of the errors that would

'1*4,.eCie It% ee At-)j is zero, by A soCond have resulted i* . and iA)had beer. appliei
u..r-e.1 *rsv<cn of the sae or lqnal signal. separetely. but.&p.roaches j ro much faster. In

the case that n(.) and ;(.) have one a" more
AcCordin3 to this sl~orithm. the same zeros in comnon. the spettrum of the restored

unsnon signal is input to two different distort- signal X(,) exhibits a larger error at the fre-

ing systems. That is. q-iencies of the conon zeros but again algorithm

nu perfoaeS much beter than algorithm 91 with
) n n X(n) the use of "i(-) or ;2(')

11!001* (n) 4 )1) The choice of the pareters I and A is

determined by the requirement that . operitor
where (n) and y (n) re kn3nl output Signals (Ir poO l- s202) test be a contraction in oroer
P7. ad hen aO h2(f the impulse responses of the for t e unconstrained algorithm to converge to .
twO I rif 9 systews wnici are approximated unique solution. The operator (I- hS1 . A 0) is
by hn) and (n) respectively. Then the defined by an equation slnilr to q. (l0) with

original signA x(n) can be recovered from yl(n) the use of Eq. (10). It is easily shown that

I. and yZ(n) by using the algorithm this Implies that

4l)' l-l Al*(fl)*yn) I1- 1 1
2 

)-42  11(o)I . I,1I,/T (13)

~v *. m.

r... .... ... .. *. .. . - -. ****.**.*.. .. ...- 1h..2
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considerably less tthan eme for all frequencies.
If [M)r. and i2(n) are normalized so that because fat, the one undesirable case of close

zeros (low frequencies) the spectra
f iC)and A. (II) have a large ampli4tude wui le~1(u*~2O)*~ii1 n).i~(n.l Ia) for k~ other 'iundesirable Case Of SmallI spectral

n Aamplitude thigh frequencies) the zeros
of A~ (w)d and Rl (.) are far apart from each

inequality (133 implies that I, and A must lip otheJ;.Similar ?esults have been obtained with the
insidae a triangle that is firftd by use of Image data.
the 11and A2 Avis and the .line A1*22 *&..Z.XAD ONLSIN

to illustrate the effectiveness of the mew
,rln.considter approa 'iat fils to the '*pulse The Improvement that is achieved by 'he ne-

re~sponses of tne distorting System% Of the form algorithm .tith respect to the mean-sqjareo
Jewi'bed br EQ. (8). where for ; (ni) M-16 and restarat-on error. is oni the order of 4-3da for
;- 'Aa') y. nt sa,,e seqAence aln) described ?uw~~ iterations, as it c' n be seen 'an Fig. (4).
by :4. 9; s~ ie in tnis exarple. Uiue to the while the Cormputational effort is slightly
faCtS tnej. a) the Ie'O Of H j for -..?-/d Is bigger. Another important featire of the Ae.

* ~very close to the zero of '()for .. ''I * al'ithe is that it Ca be applied in cases whien
.n1e tne othier zeros are 4w'te far apiart. and b) the inverse filter doeis not etist. Also note
tne values of the %oecLra of the blurred that the algorithma described Oy Eq. (l1j is
,9J'is I ,*.% and I~; are close to zero for different from the results from the al;jrit-r

Ar4sIound-7- the effect of this describeq by Eq. -(3). if wr.
*.I.St oirr.,n Ivro on tne spiectrum of tne re- replace;" 't , n) ;()ad h(n)

%t,*signal '5 _ mson-wn in Fig. t(4.) for with ,h (n)4A Al(ni .EvW though the Fourier
I J.j .terat ijnS. -*. (. and h, (n) .hj(n). t'anfirm Of ir linear comsoinatson of mpushe-
i;L. a h . It is very ciea, that tne spectrum responses will not be zero at the zeros of

* ,. "iFig. ?(&) is .ich ,mthie, and close to either m (.) orai(l there is no guaratee
.,.pnl ne jFiq. Its)). than the one shown that '. H(.I.h) twil no .11 t have teros at other

F-7. 11o) for the %&-* nanwe of iterations. locattiiA on f ;n:%t circle. Even if all tote
~..rrs~~ingrestoraton error that is Showni result ing zeros are off the unit circle. the

In F-4. 2jo;. is Still periodic and it Can be system may riot be minimum phase ana therefore it
.-nto tv uCh smaller thin the error showni in %aill no)t be possible to obtain a stable inverse

Fi. lI. filter.

The mean sqi.ared restorat ion error IMSE) The case in which constraints hose been
Letamen the crig'ntl signal 4a(n), an2 the restor- incorporated n" the new algorithm. can be
e1 signal y~n). has been chosen as a criterion analysed as descrioed is the pape, by Schafer.
fr coparin) the effectiveness of the two decon- at aI 1lJ. Fjsviolssly in this case since the
gv,?,t 1 n 4l;jr-laii5 analysea ini this paper. The op)erstor (1- 4~~ ) is a contraction, the
t",4'al-on rIS-AtS tnat hose been o*taned for constraint opapeltor'C need only be nonespandi
both the decor.volit ion algorithms, using in order for their product to be a cont-action.
different len~tn olurrin) functions, are Shown in Some initial results are shown in Fig. (4). The
Fi9* 3. Coca curve in this figure represents the incorporation of a pfOsitlvf.y constraint i
PtS: In a logarithmic Scale as a function of the results in a much smaller MS. with the lase of
nu:vcer of iteritions. Tne curves labeled A ani R both algorithms. bWt Still the algorithm v.Z Per-
:ere 11tained by application of the algorithm forms better. as can be seer by co-paring the

.1. bo0th Cases .''lb h(n)-h(n) . and the Figures (j) and (4).
blireing finct'on was described by eq. (8). For
curve A. Mtq. and for curve B. M-9. The curves Further research will involve an optimum
labeled C and D were obtained by application of Choice of the variable parameters A andm - In
the Algorithm #2. 1n both cases A s1.8 * order to speed up to converge'co e '#the
ftj~n).hft(n) ; I.n) n ) . the blurring algorithm; frequency domain constraints; the
*functionS were Aescri by Eq. (8). and effect of random additive noise in the inputs and
for ; (n) '1 us% equal to lb. The parameter 14 application of algorithm *2 to the shift-varying-
(eq. 4) for the ulurring finction ;.(n) was equal Case.
to 9 for curve C and equal to 17 foi curve D.

REFEREKES
* The much better result represented by the

curve labeled D Is due to the fact that the fre-. (1) ft. W. Schafer. Q..ft. Mersereau and 1N. A.
*quency responses of the two blurring Richards. 'Constrained Iterative ilestoration

systemsR~ and h?.)have zeros ClO%* to each Methods.' Proc. IEEE. Vol. 69. No. 4. pp.
oerat low frequjencies and zeros far apart from 4j2-4so. Ap-r-il l9-#T

each other at high frequencies where the ampli. LZJ It. 6. Bartle. *lae Elements of iteal Anal.
tude of the %pectra of the blurred Signal s TO( -a) ysis." John witty and Sons. New York. hlb.
and Iy ( ) are Small. Conceptually this means
that Reaterm Inside fte brackets in eq. 112) Is
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ON TK M .LINITED EXRLAW 1TON OF DISCRETE SiW.LS
W

N. N. layes and R. M. Schafer

School of Electrical Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT IKSOW

The extrapolation of a bandlimited signal Consider a sequence. x(n) xa(nT), obtained
fromi observations taken over a finite interval is by sampling a bandlimited analog signal x(t).

an important problem in applications such as If the sampling rate Is hgh enough, the discrete-

spectral estimation and Image processing. The time Fourier transform of x(n) will have the
extrapolation of bandlimited analog signals is property
fundamentally different, however, from the band-
limited extrapolation of discrete time sequenc- X(e") * x(n)elun

- 0 at 4 w (1

es. Specifically, as has been previously noted, I'-

a unique solution to the discrete proolem does
not exist. In this paper, this fact is demon- by analogy, xc() can be termed a frequency band-

strateo in a new and convincing way. In particu- limited sunce. in leplementing discrete band- -
lar, two methods are presented for constructing a lited eraoation. it Is necessary that the
sequence ohiCh, in the frequency domain. itS band- sampling rate be high enough to result in a
limited to an arbitrary cutoff frequency and bandlielted sequence of samples so that the
w':h, in the time domain. is equal to zero over bandlimiting constreint can be applied using a
?-. interval of arbitrary length. The importance discrete low-pass filter.
of the existence of these multiple solutions to
the general extrapolation problem is empnasized , For ContinuouS-time signals, the time-domain

and questions are raised regarding the need for property that is analogous to bandlimitedness is
additional constraints in the discrete band- tire limitedness. Due to the dual nature of the
limited extrapolation problem. direct and inverse Fourier transfor relations in

the Continuous time case, properties Of band-
I I TIOU limited and timelimited signals also stand in a

dual relationship to one another. For example.
Considerable Interest has recently been if the signal is frequency bandlimited. the cor-

focussed upon the problem of computing values of responding time funct-on Is am analytic function,
a bandlimited Signal given knowledge of the and If the time function Is time limited. then
signal over a finite time interval. This band- the corresponding Fourier transform Is an analyt-
limited extrapolation problem has been studied by ic function. It is this property in fact which
Papoulis 11], Jain and Ranganath [21 and many suggests the possibility of extrapolation t.
Others too numerous to mention here. When formu- either the tite-domaltn EI-2] for frequency bind-
lated in terms of continuous-time bandlimited limited signals. or in the frequency domain (3] 
Sig-oats. a unique solution has been shown to for time-limited signals.
exist, and an algorithm has een given for
Obtaining that solution ]. However, most As a direct consequence of the inlyticity
Implementations of the algorithm are discrete; properties discussed above, we have
I.e. they seek to compute samples of the band-
limited Signal from a finite set of its samples. Property CI: A continj-ouS-time signal Cannot be

both time-limited and frequency
Although it is not surprising that a band- bandlimited.

limited signal Cannot be uniquely determined by a
finite set of its samples, there Is still consid- or, more generally.
erable interest In the discrete bandlimited ex-
trapolation problem. In this paper wt discuss a Property C2: A continuous-time signal and Its
property of sanpled bandlimited signals which Fiurler transform Cannot both be
sheds light on the uniqueness problem in discrete Identically zero over Intervals of
bandlimlted extrapolation. any length 14].

This work was supported by the Joint Services For discrete Signals, there Is an Important
SlectrOiCs Program Under contract #9AAQ9-8-K- difference. The time-domal representation Is a
0024. Sequence rather than a functton of a Zontinuovs
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variable. Because of this, the du&I relationship whc he q dnt te (vion-zerol zero.
between the time-dolifll And frequency domains of f,(4) . NA the Order of the zero of fa(q) at

cant be guaranteed. q 1 ci. and wnere A and a devote Ca.fiea Con
Stants. The following IS a property of tntire

FPWUIIES OF 11111II1KD1 SEIINMS functions Of expoben-tial IMpAjS)
An Index-1imited Sequence IS defined to be Property A: Let I'mt be a bandlimited signal

such that those Fourier transform vanishes
outside the interval 1,. . a 1. and

1(m) -O0fornit <* and a I Ab' (2) let fEW) be the analytIE co~tiolua-
ibam of f (t) into the complex piane

Clearly we can take I and i. - N without as defin4 in (3). Then the d..le-
lost of generality. if (n) Is Index-limited. tiog of a finite number Of Zeros
then Its discrete-time Fourier transform Is cast- of F 1q) or the replacepignt of a
ly seen to be a finite trigonometric polynomial finite Set of A zeros of fYq) witr
of oroer h-1. and therefore it may have at most another set Of 11 zeros yields
N-1 isolated zeros in the interval IwI 4 9. Thus another bandlimIted signal gs(t)
we have anallogously to Property Cl. whose Fourier transform vanishes

Property 01: A discrete-t ime signal cannot be ousd thCnevlI, '

both inden-limited and frequency As result of this Property. consider the
bindimitd. sgne ( ) which is obtained by moving N zeros

Hoevrthreisnoanalogous property to Pro- Of 6 as follows:
perty U~. Indeed we can State that N u);q 1 q 5

Property 02: It IS always possible to find a a a k.1 q-q a &q5
sequence which is identically zero
over an arbitrary finite Interval ThuS, the effect of ;'q Is to move the Ii
and whicht is bandlimited to any Zeros- 101-42-. 41) O' f,14) to a Points equal-
desired frequency band. ly SPaced along the Imaginary a"Is. I.e.. q - j

In oderto vrif Proert D2.we ill ivea 2. ... , kj. laerefore, the sequence g(n) ob-
Zn oderto erif Prpery D. wewil gie a tained by sampling ,(t) with a Salinig period

constructive proof. Specifically. we will Show of T - 1. i.e..
that a bandlir~ited sequence, g(n). may 1lwAys be
constructed in such a way that G~e *j 9 ) ,(n) Ia(-in) 6
for w C < 1w1 4 v ano 9(n) - 0 for 14n4N2n 

6

whrewc and h are arbitrary. is equal to zero for 1 4a n4 It . Furthermoe.

With f.(t) An arbitrary analog Signal which th Fur e rasfr of 9(n) *vI )(

Is banldlimited to [.uw .wc] define iaq as

Therefore. since 6a(.1 vanishes outside the in-
- cterwal -w m. m& and * < I * It follows--

fQ-d. (3 t F~we~i hat r(DC' ji bandlimiid to (.. w 3ad
-0 c 9(n) is the sequence Which was to be cohstricted.

Note that although Property C2 Is stated in
u.nere q *wojt Is a Complex variable. Note that terms of a bandlimited seqwence being zero over

Yt) ~ e..fe~t equls j(q) an arbitrary interval. It may In fact be Shown
f~(t * a(J) *i~e. f4 t) quas ~~q) that a bandlimitell signal way always be found

along the Imaginary axis. In addition, note which is zero over an arbitrary finite Set of
tha f' istheLapacetrasfom o th fuc- indicies. i.e.., at for k - 1. 2. ... ' Ni. In
tha ;4q) S te aplce ranfom o th fuc- particular, all hat is required is to re-

tion F1 w Thus, since F a(a) has finite sup. place hCq) in (S3 with

port. f,(q) Is an entire function of exponential ~*N q.n

type. Therfore, by the acamard factorization (*L q)~
theorem (S]. ?,(q) may be written in an Infinite

product expansion: In the proof of Property C2 above, a proce-
dure was outlined for Constructing bandlimited

11 A 8 -44 sequences which are zero over arbitrary finite

It. 0asier and much more efficient procedure for

""as hsewIJs



Specifically. lot fin) be an &rbitrary band-
limited sequence whose Fourier transform is zero DISCUSSI..
outside the Interval (-a wC]. Consider the
sequence g(n) defined by Note that Property 02 has sone Important

N Implications for the discretp bandlimited extra-
g(M) a f(s) - I akf(n-k) (9) polation problem. Clearly it is not possiole to

k I uniquely extrapolate & bandilitited Sequence from 2
a set of %t consecutive smpleA of a bandlitmited

for sIame constants Ok for k1.2. .... N. Clear- sequence Since there are an Infinite number of
lv, since g(n) may be obtained from f(n) with ai sequences which are Identically zero over the
FIR filter whose system function is given by: soe interval and bandlimited to the same or

4 N k lower Cutoff frequency. (Obviously any one of
A(z) - I * a z (10) these sequences could be added to the original

k.1 signal without changing the i samples available
to uS and without violating the bandlimitated

then g(n) must also be a bandlimited sequence constraint. Indeed, the constructive proofs
which has a Fourier transform equal to zero out- given above can also be viewto as extrapolation
side the interval E-w . w 3 . how suppose we Methods. since we can create a sequence withi a
impose the constraint" Nat g(n) - 0 gap of N zero samples and insert the f known
for I a n 4 ft in (9). This leads to a set of N Samples from the original bandlimited sequence to
equations in the h unknOwns a. for k- .... k; obtain an infinite sequence which Is banolimitea
i.e.. to the desired cutoff frequency. and which

f matches the original sequence in the inter-
f(n) • a kf(n-k) n-l...h (11) val 1 l " s N.

k.1
Therefore, assuming that a solution to (11) Thus Property 02 Implies that there is no
exists. a sequence with the desired properties unique solution to the discrete bandlimited ex-
may be constructed. The question arises, hcw- trapolation problem. Altnough this seems to be a
ever, as to the existence of a solution to (11) well known result, we have not seen it proved in
for a given h and f(n) or. more importantly, how either of the above ways. One approach which has
to select a f(n) Such that A solution to (11) been proposed to obtain a unique solution is to
exists for any ht. To address this question, apply additional Constraints such as minimizing
suppose that f(n) is a bandlimited sequence with the energy of the extrapolation.L2) Perhaps the
a real and non-negative Fourier transform, i.e.. constructive methods for creating extrapolations

of band-ltited sequences will be useful In
F(e') , 0 for -1 ' w 4 0 (12) Choosing additional Constraints to apply in theextrapolation process.' "

In this case. f(n) corresponds to a valid auto-

correlation function and, as a result. equations iulFERMS
(11) represent the familiar normal equations of
linear prediction theory which may be solved by [1] A. Papoulis. 'A hew Algorithm in Spectral
the Levinson or Durbin recursions[6]. Thus. (11) Analysis and Bandlimited Extrapolation."
will have a unique solution for any ht except for IEEE Trans. Cir. and Syst.. pp. 735-742.
the case In which f(n) is of the form: Sept., i',s.

[2j A. K. Jan and S. Ranganath, *Extrapolation
f(s) fco(n * k) (13) Algorithms for Discrete Signals With Appli-

f N 1k k cations In Spectral Estimation,* IEEE Trans.
ASSP, pp. 630-845, Aug.. 1981.

For sequences having this form. (11) has a unique (3] 1I--.. Schafer. R. N. Mersereau. and N. A.
solution only for those values of N for which k < Richards. 'Constrained Iterative Restoration
N (1]• Algorithms.' Proc. IEEE, pp. 432-450. April.

As a. example which Illustrates this proce- [4] A. Papoulls. Signal Analysis. McGraw-hill"
dure, shown in Figure I Is the bandlimited New Vork, 1977.
sequence (53 A. A. G. Requicha, 'The Zeros of Entire

sin w cn Functions: Theory and Engineering Applica-
f(s) a n (14) tions," Proc. IEEE, pp. 3Xb-328, March.

S*1980.
where w 0 G.Nv. Shown In Figure 2 is the band- [6] L. R. Rabiner and ft. W. Schafel. Digital
limited sequence g(n) with a qap of h.25 zeros Processing of Speech Signals, Prentic-allTT.which was generated froa f(n). Figure 3 Englew~od Cliffs, 197o.
shows A(:I). the frequency response of the (7] J. P. Burg, Ma, mum Entropy Spectral Anal-
filter used to obtain g(n) from f(n). Finally, s, Ph. versity,
Figure 4 shows the Fourier transform of f(n) and Po.4 (n). -' ,

1-'12
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Now-CUiem DALWAI6M FOR TiHE EWALIATIUt OF OWLTIUl-ps(aIk~r,
11111 ONi ARVdIII PIMOOIC SOWLING LATTICES

a. K. Ilerseritau. 1. W. brown. 11I. and A. Gajessous,

4 School of Electrical Engineering
Georgia Institute of Technology

Atlanta. Gergi., 3032i

Recent Ufa by Nerstreau aft Speake 11.2] Such a UVT Is Ijerived An d a cu&sd ~ in
tas %now" thast oultisimae~iioaial discrete Fourier
tan~fo,'s h$1~s) Cani be defined for signals ~ ~..4I Bli
jefiiea L1 any peri~dvc S&V1#0ln itt~Ce Aa tivat NTI OLTTKYAM T

tey cn.e eualwated using a generalization of
the :alley.%tey F1I algorit-Wi. 1"0 main PuV~5 lon this section we will outline a eatris
Lc ti' O& -' to 3tve1oo alterniative alga- 2enerdlizatiofl of the (ooty-t6%'ey fast rourier
ritn-s ft'cfk eet m,re Suitable to highly yarel- trans'ora (FFT) algoriti. ; which Can be uieS
e. a6ci'ie archietres Alta .0ic.i regaired less to edeluate (1). A. mcife complete discussion is

0ate hinjisnj than the CZ.-ary-lTjey algorithms. given to ~j
S"Mr on &*(bVit~m IsL described here. It Pasev

.. if the lilh normal for'm Vepresentat ion, of aft The key to the efficiency of toe generalized
,-rje, retria. A% a sidel17tn to tis$ iiare a coaley-luvey algo-Ithi is the ractoraoility of

..n~neie 'eve'"je tfte~w~i for lattices ha$ been the ;rriolicity maix.. U1. it is well k.nown that
:velr,CI which permits a extension of 4cW%' the efficiency of a 1..rT ai~rt-i depends

ti e a,tor al3oritht-. This is Also oe.'crilevj. strcingly upon the le-Itsi of the transfo't. h;.
these Algorithms biecome truly efficient only when
Ii Is a highly coyposlte integer. Similarly.

INIUiTION efficient Co0ley~lokey aliorithntS fool the u'lti-
dimension~al problemn exist iihenever the periodici-

MnIS pa; Ir aoldrp%%es th# problem of evaluat- ty miatrix. II. is, a coePposite Integer VatriA. If
in a J.ne~lmltdntdil discrete kourier R is composite. It can I-e written as
t'an'U".' uf ) of the form

Atli)-. *a) eap .jk 1 
(2-111 1 (83](1

on we, e P and 9 are Integer matrices such
Ithat Idet P I#? and Idet Q 14i. (AS An asde it

*The %e~Iuence .~)and its I/. l(1). are assayed can be noted that U is factorable whenever the
to t! !-aOdWrrns)i. TAWS. a and kt. the '.ignal a~soIate valie of It% determinant, which "ut be
d3ma.1n and Fourier domain independent variaboles an Integer. is not one or a prime number. !iuch a
are Kt-04"nsional colwa-fh vector-. with integer factorization Is not unique. except possibly In
c coefficients. The non-sero samples of a~m) are the one-dimensional cast).
confines t0 the rellofi IN in the signal domain.
The matnia a1 is shiown as the Veroodicl ma The Suqviationl In (1) produces a distinct
triA. It IS an H .q4 natria with In~i'esnTs value for Idet Ni different values of It and it Is
whose role In the multi-dimensional LI is invertible it the region Is also contains Wdet Ui
analogous to the transform length of a sam~ples. These Wett III val us of a and &t can be
one-dimensional Algorithm. For the traditional ejoressed as
ljFl which relates A rectangulaorly sampled signal
to rectangular samples of its Fourier transform. ft*0a # a 11 3r (4a)

-. I NI$ diagonal, but nion-diagonal periodicity a-.
trices can occur in computing the OFT of a signal a 0 Pg *p S (
which Is not rectangularly sampled. For lasaple.
: to-dimensional iff which relates a hexagonally whepre p and In Come from Sets of integer vector%
tripled signal to hexagonal soiples of its Containing Idet III member% and q and a Come from
Fourier transform uses the periodicity matria sets of Integer vectors containing Jdet QI asew-

bers. Substituting eqs. 14) Into (I) reduces the

*this work was Supported. in Part, by the National Science Foundation under grant ECS-7811 20l and byth
Joint Services Electronics Program under contract UALA~g-blI-V.U04.th
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cowouation of a atrox-U OFT into the Compte- fo Ilowing algorithm for evaluating a omtri..
lon of idel Pi atria-0 DF~s plus ldet.Ql ma- DIFT:
tria.lP LFTS plus Idit 01 aditional Complex

* iAtipiscotions. the net computational effort is Algorithm A:
less thsai It (1) 4S evaluated directly. If
elnfne' P or Q is composite. a similar decomposi- 1. lapres% U in S.mith normal form as
toon can be vied to evaluate the smaller LiFTs. IT - U a V.

The two "~it como algorithms for evaluat- 2. Scraroble t he Inpyt arrty according
ing the multidimensional rectangular OFT. the to the relation a - U' a.
r;.cla algorithm ad the vector-radix 6lg0-
,ithh*. correspond to special cases of this 4lg0. 3. COMPite a UF1 of the resulting
ri'.h"i. The~ir specific relationship to the array vsinq a matria.S iVl. Since
eneril 0ii rltno IS discussed to 12). BIs diagonal. this call be done

using eitner a row-coluvi jjFI or a 4
Onlie the genleralilad Coolty-lakey algorithm vector-raii ffl algorithm.

Ii. eiwi.t f'om a concept...l point of view. It Is
cifficilt to firler"vnt for non-diagonal porioai. 4. UnSCriniole the output sequence
city "itrice$. Ine difficulty lies totth the According ~. to the rela.
vectar .qjivalrnt of t.ne bit-reversal opera. tion k - V It.
tion". A We.lutmon of this difficulty is known
toor tole he~a47nal case [5j. bjt the resulting (ubserve that with this aliorithm thte multiolven.
jl';3.i1" rejilp *that the Zito be reinoeaed it sional arrays need to be rotindotned at most twice.
es'" Jeel-Wto$ Stage in the algorithm. The once at the beginning of the algorithm and once
Ij-l,h 2,v..ribed in the nest section rtdu~es at the end.
t-le @"9Oft of data shuffling required.

nohile thte ratris I s an at a K Integer *
trig. the motnIA.D Uff At step 3 of the l.ti

SMITH WIA FORM is nol necessarily anl M.dimnioial tKT. To
Illu~strate this% faot consider a two-dinsional

j~iU' dliVnii1 . a mjltld..ensionil JI ratris U tAFT fur ionih Idet 0~g 2  For So, a
* can Z.. *flcifnt1Y irleqted 01in; eithler the tice atria 0 will assuloo thte form

Iiri f IF is non-diagonal, we can devefop p** d
sieilar algorithmis if we first write it 1- in mitho
normal form For other 0 tote matrix 0 will aSsume the f~re

*~~. .1U. D *a .a (9)
nAere D i% an Intel"v diagonal1 matrix and 0 and V0 1

a re W~niYP)jjljr. I.e . Oct U,.ldet V,-l and IF and .ith*Jgh the Smith normAl form for a NATION IS
Virot Integer ratrtcts. Tool deron;)asition cah got unique. the forms for Its diagonal substi1tutq

be ;elforeed by eaccuting4 eleventary row and normally is. (Done exception to thits statemenot i.
*C1314'n O~oeat i0A an lF. discussed bolow).

Substituting eq. (5) into (1). the OFT sum- If 9 l' hth rnfsr of eq. (8?. the JI of
nation can be written as step 3 of Algorithm A corresponds to an No a t

T .1 -I -101 two-diwmnsionial rectangular LsF1. If B 11;S thte
i(t) esp.-Jht V .2-D 10 j. f ore of eq. ('a), this Of, Is An h % 5-polint

~" oe-diensonal0" . Since the two-dimensional
transform can be compuked more efficiently than a

*how. If we def ine .one-diaiensional transform with the soke nuomer of
* *u

1 .points anIT maix. watose diagoal substitdte IS
of te fom o eq.to)is to be poreferred over

a" o of theto'sof eq.( . If 1 IaN 42 mre
& -, W eatively prime than diagonsal equivalents of

toleDFTSjdwtjo redce. toeither form exist. This fact was #aplatted by
Inc PT j-rtionredcestoGoo" 161 whose prime factor algorithm represents~ * (7 an efficient algorithm (for evaluating a I D

* (S as)ePJ 4,?.r' j*~ OFT. the prime factor algorithm awks by writing
i~l~ .a 1-0 liii is a 2.0 OiFT whose periodicity maiai

IS of the form of (9). Tow data ar. then' nWrO-Thi Sum reprejeoits a atrij-9 OFT. furthermore e4 into a for" "wee the periodicity atrix his
sRinc U is, unim~dulir .nd a define the s#,w the formn Of eq. is) which IS Then Wvo* $too w~iAV
-Attica. the Sequence s(n) i% skimply a reindened a row-colum two-dimnir"ofal 1*1, with an Otte"-
version of atinI. Similarly Akf) Is a ralindorsed dint comptational Savings.
version of A(k). This decomposition provides the

%~-



io a %litter fashion. when 4 ts how we ore ready to present. a (ninese re-
M.divenstonal. the dm nStionality O

f 
the mat-Ia-0 saliner theorem tor integer vectors. SzOipose

~f may vary fro I to N. that -I Composite Inteier matrio Such tnot

MATRIX PRIME FACTOR ALGCI1,11iIU
tere !det P1 l-1dot PtI.p. Idet q11-ldet Qlq..

witn Algothmt A, the evaluation of an
* -d' vsnlonal matriA-U OFT can be accoemplished by and p and q are relatively prime. Then L /.T Is
-tans of a rectangular DFT of dimensionality less
than jr e4,.al to ". it can also be accomplished Itseorphic to L L LI/T. Thus any Integer
tiy j6inq a htper dimensional rectangular UFT Oy 2 Q,
us'ng a genoralization cf Good's prime factor vector I from the *region' L 1/0T can be repre-
Alptnin toj. To explain the algorithm. how-
xyer. ve 11 need some results from lattice sented by the vector pair (kI. k2) where
tnoe'y. T

L a .a,..... a be M linearly inspendent (I),.I:'t:. ,; t~e -. 'eensionat ral Euclidean * k aO T

sla.e. The set of vectors
The Inverse mapping Is given by

I • .la * .. • ii (10) i
a - I a Namk • Ak it It, mod 4

T

.'n ntirgral .... is callel the lattice *.A&*I md
*'~.i~ a ~ ,. if tne vectors a1 .. Am, where

"It "o2-ej Int) a -atria. A. eq. (lii can be tmdT*-'tten as A k1 i mod T

x * Au. (11) -. zmod O

.ot tqe lattice generat.o by the matrix A be A second isonOrphis its given by
at" 'A- There is a onOe-t-an, relationship

*,e..ren latt'cv and matrices. lo each nonstng - *j ,
)a iritriA A corresponds a lattice LA. bit to
each littice A there is a ai le class of nonsin- where Q an * Plls a n mod N.
golar ratrices. Two matrices A ana 9 belong to 2
the sae class if A - S U wnere U is a unimodular Substituting the two Inverse relations Into eq.
matriv. (1). the LiFT samiation can be written.

'f a lattice L is contained in a lattice Ilk. kI a, I. Z
L. the, 'l 's called a %,tlittice Of LA  in LAtP! mac In,,.

-t'scae r A C inere C-a'Tieer ratria. "r "I
The set of vectorS cOvR.on to two lattices LA and T .1 T -1
L@ constitute A lattice IT calleJ the getst *j2.k1  t.: 1": 1 2  I I
C.,")A suulattice Of LA &no LB . e e

If a and s are two vectors belonging to a The re!sulting algoritht is similar to Algorithm A
lattice L. aOnd if LS IS a Subl4ttice of LA. we In tshat it involves shuffling the date, perfurm.
will say tnat Is congruent to 0 modjlO a. writ. Ing a /1 and then shuffling the result. The aT
ten formula In (12) r-.eces the computation to a

numoer of smaller LUFS. A matri.-II IFT iS eval-
a i (modulo 3) u1) ated for each value of the Index 411 and then a

mAtriA*P IjFl is evaluated for each value of the
if (1-•) IS a vector belonging to La. This rei- index kZ. The number of complex multiplications
tion defines a set of eqjivalence casses. called Is then
the Set of residues modulo$. ihere a class LA j
ia -* Idet PIm2 * Idet QIa . (13)

.6;-,M - LA Such that m 1 a (mOd.slo 8)l (13) where mI and 41 are the number of multiplicationsfor a matria-P OFT and a matria-q respectively.Thuis et of classes *I denated AfiS . amile eq. (12) Indicates the required COmpu-

tations. it is not clear that an efficient Order-

:-3
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tag for the dat a cc% be found. That task Is made NFIJLICIS
easter It a stanca d basis for each of the lot.
tim il n silatticts is Usad. dith no loss of It) It. 1N. Mersereae and 1. C. Speate. 1Tne p-o.generality set us confine ourselves to the two- cessing of periodically sampte moltsdimen..
dimenional case and let us, consider the eralue- *lonal signl. liEt Trans. Acoustv

tiUo - matria-P LIFT of the for.meh Sign:,

1(b) * (N)txp:-jzokTDV (14)
ik L1, UPJ fj . M. Hersereav and 1. C. Speake. A u~nifited

treatment of Cooley-Takey elgorithis for the
Let P 1.pZ]. Then It Can be shown that there evaluation of te multidimensional LI0T.,
exist vector" at and Azsuch that 111i Trans. Aco-isttcs, IPVIeec h. inal Pro-

r* ws L r v. ASWa-49. ho.5 pp. 6 lu.

'2 '11 h2O (3) Rt. M1. Nersereajt. *Tow processing of hexagoni.
ally %&spied two-dmensional signals.- Proc.

> ft h h~ 2 0 IEEE. vol. 67. Pp. 9JiJ-949. June lghv.

ands'1 And s.) form . basis for L?. Inverting (4] J. W. Cooley and J. W. Tukey, 'An algorithm
tele eoa tton gives for the machine Calculation of oaple.

~L ~ii'iFourier %tries.' Mai. 2!!2t.. vol. 1'v. no.
P1,911 90. pp. 296-301. T =

P2 ' 9201i * P~l (5 . lL. Murphy and h. C. Gallagher. loealgonal
e aset" f vtr Sa $ e opling technque applied to Fourie and

r'e tne s lt tcet s o a is lss o l .Ft.erse e dig!& T. ¢. am pe . opthe So- -.

Amer.. vol. 72. pp. 11-931 7, y b.-
for St lser valus o2fnd 2 i] t tag Ibo C. J. Lod". 'The Interact ion Algorithm and

f~r int~ r vfal-U o f u a d U 2I o t e for n cpractical Fourier series , g Ro- l t at.

Soc.. sere. . vol. 2V (16 k., PM61 3un T
i0 4 1  oAdendum. 2Z Moogi). pp. W7-05S.

Conetitute a represeo-tative System Of r"Sidut
ClA ses for Lp . Silarly te rn ere eist vectors
y, Y d ne ers en'l ' s uch thst the Set Ofv a ectr 4 111 t 22

vlyl v2Y2

Constitute a representative set of residue

casses for L, T - thus If a ) * (WI.u 2 ) and

Xlk) (Wd.f the Off becomes

X(v.v 2) * 20t p -1.02)

tap:>J(vly1 + v2y2)~P T *I(NIl *2K)

o " V2 ( 22
This •F? Is n.ow in the form of aMrFy with a rec-
tangular region of support.



DimensionsI ity-chafging transformations with
nonrectangular sampling strategies

Ruclaccl M. Meeirosersea Abstract This paper is concerned with the use of dimensionality.
Ogri nttt fTechnology chanfglig toalosfrtiolns for the digital processing of signals that have

Scho f Elec1ricl Engineering be" smVled on samsling lattices other than the familiar rectangular.
Atlanta Glearict 3=or towoolunn one. After introducing the idea of rionrectangutar irsm
Atlata.Geogiapiing. the paper formerally present' a partlzularly useful class of

dlmerselonaclity-ctanging transformations and presents conditions under
which they can be used for signal processing. It does this by means of a
vector notation. I ne major resuilt Is total the use of such, transformations
with nonrsctalareusly salmpled data Is no Wi . restrictive, no margrdm1.
ficull. nor, sbstan'say different than with rectangularly sampided data.

1. OVERVIEW ft.y) is bandlimited such oham its Fourier transform, F,4uvL
A topic of increasing interest in the dit signal processing cons. stisries,
intty concerm the rerecttion and procesing of miltidimen.
sional signals, such a- images and electromagnetic field distrsbu. F tu.v) a.0 *u - vi t I.(
tinns. on periodic but nonirectangular sampling lattices. Thewse x- ZY
representaliom sitr important for digital signal processing because f£sycnbesat reerdrmshara@4apl
they can mean a reduced sampling density, which. in turn. means vthes gisey in e eeatyoI).rm h rayo ml

reduced storage and reduced computation. they would appear to vausneinE.1.
hase somce sdsantages for spatially discrete optical processing as We can define the Fesurer frruasfrwm of the *a'wenr ftfg.4 J.
elln. One of these alterncatiis sampling strategies, in fasct the mosts which we shtall denote a, FHu.v). according so she formula

common One, uses a heesagonal sampling, lattice for tso.
dimensional (2-D) signals. ZZ ln.,eiIjrU-~nYj 3

Reversible, linear. dimensionality-changing transformations oer.
mit both optical and digital signal proce.sing operations to be per."in
formed using intermediate s~gnmls whose dimensionaulity may be
different from bosh the original and ultimate sinats. These F(gs) is Periodic in both a and v with a period or aIX in isand
transformations are well understood in the contritt of rectangularly period I/Y in . Such a function is said to be meagerhy

smldsignals' and they catn also be used ri tisinectagla
represetstations. It s osth use of dimensiorucliiy~changing transfor. The Fourier transforms of the continuous and discrete signals wre
mations with nonremsngular sampled representations that form torssed by
the central topic of this Paper.

This paper is divided '"to three pants. In the first pan a general Fus ~* 4
framework for the nonrectanigular sampling and discrete processing F wiv Z c(4
of bandlimited. spatially continuous signals is presented. In this& fee (eg

presentation a vector-matrix notation, which has been found to be
particularly useful, is used, Is allows the basic concepts to stn ot when( fsY) is bniten d smldwtsapling rates in ee-
in an uncluttered fashsion and makes generalization obvious. In the cen of m.. Nyquist rates. F(u.v) and Ftu.v) are proportional toone
second pert of the paper dimensionality-reducing transformation ano se and re gisen by
for rectangularly sampled signals are reviewed usig this notation.
Attention is directed toward the Performance Of signal processing I~~' I 2. ~v ~-
operations using these transformed signials, in the renal seccioti of Fuv 3I cuv !-
she paper, the results of the frst two uans ire btosught together in a

* consideration of dimcensionalitychi-r~:.ig traensfortmations for
nocangularl sampled signals. Iv -3)

2. NONRF.CrANGULAR SAMPLING
* .If f(x.y) denotes, a spatialk cc itinsuous. two-dimensional signal. Notationallv. all of these estpressions can be simplified if we

The operation of tctaingurit sampling can be described by asdopt a sector notation for the signals. by defining i - 4%.0% ;
- tu.vi * etc. If I* denotes a vector transPosel. Eqs. (11. (M) and

f(,n,) - Q~nX. n2Y) , fIilld can he wreitn as

where X and Y are she horizontal and vertical sampling intervals. If £-£6
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F11 1.

lit ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Fieo tlontfi,. of ist snw ssh nps n@LFrli nnuar* -
salingu te defosed (or ew expeis has given by eveloped

E ,s 01) 3) an a-huk e vdn.I hud lob la~a
.~% (61 to()cnas eue odecie-dnisoalfa

1ngla Y]~hF Ing th. can. Aeoe anetngtd Ma~I xina Matc uiaona 0 0 0 0matrix~~~~ow. andto a.ma u.ad ecmgnaeen oum e.os
Plrogc she exct anulr tseln cxrean lsob sndesieloyEd%

()1 .Teonly deferenc isitconsisn onge dqsi(aonl 3In
q Im . (th . aoun s ho l bae vet t sho uldntpt als b cle a ha

lios dfine tho (sarI ltcesan aobeudtoecnexampl'e seohave te. ...
mar Ind . ii. an ow in Feca . l.ee he ch com sn d to tht 

O O0 0 0

sampling nmatrix . 4 . * *

p. 0 ,~V# 0 * S
3'* I. * * *

I (10)

It isould be noted that although this lattie is nonrectangular it is B
noeheles regular and periodic. In Fig. 1(b) %e show the Fourier ________________________________Itransform of the sequence defined by the sampling lattice in fig, Fi. I A Isegoil aamplift Iatle.
la). F(7) is periodic in Z; that is.

-F(; * UT) 41) for which the sampling lattice is irawn in Fig. 2. If X (-123I)y.
each sample of the hsexagonsal lattice is equidistant frot. six

for any integer wveor'C where neighboring samples.HxgnlsmsigI pia o
bandlinited., spatially contirtnuss signals whose Fourier transsformsr4  ~ are confined to an eclapse. (This ellipse Lecomes a circie when
X -(2/'V3)Y.) By this we mean that of an the Sampling lattices that

3 3 permit an exact reconstruction of the spatially continuous sigrual.
412) the hexagonal one has the minimum sampling density. This mesiltI I was shown by Pceers wid Middleton. 2

L' ,J Nonfev.sguar sampled signals can be mud for ligra' prc sg
as well as for signall.epresentatios. often with significant compusa,

IL is ealed the p~oWdn' mebtr of she periodic signal. if (T) is tossal sv igs. A number of signal proces algorishs for the
bandl'imied. sucs that its Fourier transform is confined to One hexiagonal case have been derived by Mefserea. 3 Speificaly
peli'id of F7). then fc() can be recovered exactly from f(i). it algorithms have been deftVs.ed for linear. shift-invariant filtering.
Is interiesting to noe that she sampling density is giet by discrete Fourier transform calculation, frequency reponse evalue-

tion, and flter deagis. For isotrapically bandlimited 2-D tignak
Idet~i I insagonal represent r can mn storag savings of 13% and

Idet.il computational savings of 23 so 60% over the coimparable rect-
which Is aso equal to the area of one period of F(;). aglrrpeettos

Hexagonal sampling corresponds to the sampling matrix 3. DIMENSIONAI.ITY.CNIANCING
TRANSFORMATIONS FOR RECrANIGULARLY

x X SAMPLED SIGNALS
2A di~nknIl~hnsgIaxo'eosis a rearrangmet of

(11) she samples of a Anstie extents R-dimensional ary onto an
S-dlmensoeml array (So *k) that contains the same number of

If -Ysamples. The motivation for rich transformations is ;muply ottw of

32 /Sr . 7 ,n~nnm iOeeIreAesstpv
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*coonsmace:. it may be easier to Process an ft-dimeneioal signtal by defined as
rawi mapping the signal to an S-dhimensionail lattice. processing theI resulting S-dinensional signal, and then mapping tse result back to
an R-shmenstonall formnat. If ft>S. such a transformation is called Fat,;) f(iWlespf-jzyrii ('9

danw~saorhiv-s'duin, tft R<S. it is called dirrininseunal,-
inerresna. Clearly. the inverse of a dermorsonalasy-teducing:
tranrformation (DRTI is a dimensionality-increasing transfoema.
tion (0171. A simple example of a DRT is the lexicographic order-
in$ of the el eents of a finite area 2-0 array.' This corresponds to G%(Z 1 t 16 1 .A expl-j2yr;! 1i. (20)
concaaefstting the roos (or coluni of the 2-D sampling; Lattice toI form a long I -D sequence.

For a damenuionality-ehanginE transfornation to be useful for IslIII, assumes thai the sampling malis is the identity matrix) %%here
signal processing it should satisfy at least two conditions. First, Zn is an ft-dimensional frequency variable and is an
operations such as linear Ailtering and Fourier transformation of "-dinienvional fieequency vartable. we can write
the S-dimriensional signal should correspond to mecaningful opera-
tion% on the ft-dimensional signal. Secondly, the transformation
must he uniquely insertible for array% with a finite number of G,(Zl= e..IW) esp-j2TiI
%ample%. The latter requirement is necessary if we are eser to be
able to return from an S-dimensional to an K-dimsensional format. W

Aparticularly useful family of dimenvionality-chaznginig transfor-
mations for signal procssing ate L)RTs for which the sector in-
dice% of the ft-dimensional arrais. aye mapped linearis to fyt(Wlespl-j2rZTI
S-dimrensional indices. If fuqi;i) deniote% the R-tOimentional array W
and lyt ; I denotes the S-dimensional array. then such a mapping
can he urilten as

=Far! V). 121)

SrThe I isurier transform of the sequence poE ni thus corresponds to P
Awhere T is an S) R f matriS. ihe csalujtian sof the Fourier transform of the sequence l,(3 n Ion

l-et the region of the K-dimensional sampling latticesA here fvt nI an %-d~riional subspace of the ft-dimensional Fourier space.
is nonrcro be denoted by 1. The transtormatis 7 still be tnserrible I ot a oldunumi iseg raphic orderings it a scalar and
if m; = n s, unique lor cesery s ector n in 1. In rihat is it, foillow.
we shall assume that T represents an insertible transformatioan.
although this inserse operation cannot generally tie desc:ritid as a r~-
main, Operation. (i can. ho%%eser. be imprlemented using a ol. Ts'I-
up table.) IS - ~ As an esample consider the ro%%%%ise lesicographic o'rdering%
discussed earlier for the case Rt 2,S = 1. Thai is, %%e wish to form a
3-f) sequence bys concatenating the roAs Of a 2-D %equcn,:e. Let the or
2-0 sequence occupy an N, PN.-point sampling lattice. I his map-
ping is defined by the transformation matis(E) I:l..s (421

T~l N11. (151 This %a%-. that the routier transform o1 the seqence Film)l is equal. -

to the 1-outier transform of the sequence f,4 n) t ealuated along a
Thus, it follows that single line in* the 2-D fourier plane. Because of the periodicity of

F-4 u I. ho-Aeser. this is equivalent to the evaluation of one period

m"in Nlnl n, Sir 1~.16) of Fd 4in Ion the series of parallel lines. shown in Fig. 3.

InJ T demionvtrate how the transformed igpnals can be used for
linear filtering, consider the configuration depicted in Fig. 4. whlere
an S-dimensinal linear. shilt-insanant system is placed between

and roefribler ORT and its insers. If hI;m) denotes the impulse
response (point spread function) of the S-dimensional system, then

* N~.) ~tnt~l.417)
j5n)g5(rn) h,6;). (23) .---

Note that in this example. since S= I. the inde% mn reducs to a
scalar. In this case an operator T 1'gmj that will insert the transfor- whtere *denotes an S-dimsensional convolution. In the Fourier
nation is given byomi

S = (ET' ml, - (ag? o

where ttmll5 represents the evaluation of mn with respect to theFit H5 1 ] ()
miodulus St. wheve Hn(il) is the frequency response Ofran ft-dimensional t)ster

If the Fourier transfoifrmsof the sequencesfm0 land g5(ms Iare whos impulse response maps to h,( m) under the transformatio
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however. we would see that while tbis is insertible for the 5 x 5 se-
quences being convolved it is not inetible (or their 9 x9 consolu.

--------------...- tion. The transfonration

is invertible for all three sequences. With this transformation, the
5 x S sequences are considered as 9 x 9 sequences by appending

samples of value zero before the DRTs.

4. DIMENSIONALITt-CHANGING
TRANSFORMATIONS FOR NON RECTANGULARLY
SAMPLED SIGNALS
At this point we would like to combine the results of See-. I and 2
to discuss dimensionality-changing transformations for sinals that

-- ------------------------- are epresented on nonrectangular samplingltattices. Because of the
matrix notation already established. this is straightforward to do.

As before, let fa( i) be an t-dimensional sequence that is pro-

Fig. 3. Th lines in the 2-0 Fourier plans that contain the 1.0 jected onto an S-dimensional sampling lattice uith R<S and

Fourier transform o a ¢olumnwise Iexicogtaphically ordered 2-0 transformation matrix T. Thus
sequence.

428)

Now. hoveser. we will assume that the seQuences fQ() and et, i I 1

"., , ..- .. - .... .. .. correspond to nonrectanipular samples of the continuous R and
" . -.. -""--"....."- ". ' S-dimensional signals !( t I and g( r I. If we denote the two

-' ....- sampling matrices by X and V. then

Fig. 4. An implementation of an R-dimensional linear. shift-invariant iS ft (9)".

system by means of the realization of an S,-dimensional one.

g.,lnsl = r(,tml . (30)

T. The transitions from Eq. (231 to Eq. (241 ail: from Eq. (24) to

Eq. (25) are both ins ertible. The matris X is R ft and I is S Pc S. As an example, fR(W I could

represent a 3-D signal that has been sanpled on a body-centered

cubic lattice, and g,( ) could be samples taken on a 2-D he%.

* alU') = Fa(t)H 5 (u'). (26) agonal lattice.
The Fourier transforms of the sequences fa(ln) and g.(m ) are

then given b

fi(tl) - fnl'*ha(t5), (27)
F'f = I+( t)exPl-j3,''X;l (31) ..

where here * denotes an R-cimensional consolution. If Eq. 126) is W
true. then the R-dimensional consolution of (,( n I with h5t n I can
be performed by performing the S-dimensional convolution of
ims ) with h,l m ). Equation 12') sas,, that this result is true on a
subspace of the Fourier plane. The question is: when are we CGT) = g*lm e5P1-j2i s.. mI. (32
guaranteed that it is true in the whole R-dimensional Fourier space? ' 

" "32

This is simply the Fourier domain statement of the requirement
that the DfRt described by T be insertible on the lattt:es containing By substituting Eq. (28) into Eq. 32). we see that
gstml. ),( in), and hs( in). INote: the insertibdity of the transfor.
mation operation does not depend upon the inertibility of the
matrix T. If R * S. the matrix 1 will never be insertihle.) G,(&) - T f(n)exPl-2wV1s' li (3)

Since the R-dimensional and .dimensional cons olutions become
equivalent if the DRT is invertible, we see that we could just a% well
perform an S-dimensional cunvolution by performing an F R(IIT ,.) '7). (
R-dimensional one. Thus. the system in Fig. 4 could be used if

S > R by simply interchanging b.
' 

DRT and its inerse.
It should be emphasized that the fact that gs,(n ) is invertible As we saw, in the rectangpular case. again we obverse that the linear

does not guarantee that i,( il will be invertible also. Consider as transformation between n and m inducts a linear transformation
an example the convolution of two 5 x5 arrays by means of the I-D between u and V.
rowwise lexicographic ordering. The true convolution of the two As a special case, we can consider the ro%wise lexicoraphic
artays is a 9 x 9 point array. f,( n). If we were to use the transfor. ordering of the N i x N, sample helagonal lattice shown ig Fig. S in.
mation matrix to a I-D sequence. For this example R -2. S I.
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0ape 2. s0ne at E Is(1

aadllate sink S1c the can resul n % % ae Na.ln den-

Fiomuttin. Ss A~ heaseo f seenle inu C Ofi paper. extent no necessaryIs

Here.~~~~~~~~~~~~~~Fg as intercaglrcstelDFuirtasomO ~ nThue lihes ntre 2-anuier lamnse thatcntain.t.
*~~ore leitcogaphiall ordre thqen corresponds~il todre thexagonaourle

*~~ ~ ~ trnfr sampultd 2lon aina ofaih lin. (2et h proiiy f AlN wIE) M:

*~ta~omto F5(ta?. hovusr tha isme eqtoln to usedaain one periodi of
* Fgi u~and a eiso nelcdprle tagtlnsa hani hor- -sigasO ptlote in r. by n aton ang l r -sin lottnde%

icon unemre efra nt than78lrectandua bteon e rs ices Uectronics certai
If ~ ~ ~ ~ ~ ~ ~ ~~~bnlne Tinas Sinc anur cnartbl opertion then a-iesoa linear. abut.in Pdeanudrc-tatI)A2.M

*lv inaran orIon cany bee peaome onqir fc~s stoag and impemetin Rrtmei pF REN
(n S-imn3oa linear.ons At~isrin %te to~ operet onti.ppr tisntnc~ayt

g~lrn~. I thi resect leteis noditfrenc betseenIlicred- Ifc NIte oeie nde o. a. Ddieon *ith nn renttransforma.o
anure a nd nherectangular cave. d - orirtasor fte t n t o vth sequecanlr msal resentaos. IFin.
l exorepasn ordee sin qudence orry-nesp n trans -Foriner ~ ut rehai ig rc NP2.35 1

transform~I) P.lute aetorne an sia.li linde.'.Snrtn andc tonst n ohfeidct f C N W E G E T
* for ~~~~ignal. poces i is primuarl n lot mpementtln oneneionde ofennte ~ie ucin s ~iinintti.iensa.

ecaus theaser- tra n ranedo narallevraghe otlinuer sofsi dat Tinfor. %a% upr. e.i pan9192 .byheNtoaScneFud.
* sampesi nsld meel thon fomtuhyd o euti o-~~ nd.ereura EC-7172V arndn byt Joian~t t santEle toic

11'1ian nvetibe oertio. ten -dien~onl lnea, %ill Pdirm nensa cognat P It IF6793-C00159.
* pt~~~a -ietional in lsesr. sift-baransar e n treo optic is A*E t.F EweRuEs'g Nte.nrrcrne iesEoL

Thile foe procor sing a sigunals.duenoahychanging Ia frain 2 1)7. P . irw and D.ft dro."apig n ei~rcino

Becuw he trn~frmt insdo it ltr te ttSPnube oof 373a Inf rm.c nfor S. epria/r9s/Pr19amgf .

samp% ivoled.merly he frma. tey o nt r~ultin om- 3. .%. Scrwiau.,Th prsmvmitof hr~aionllysamledtao
die~oa e . -. rc tI 6,90 1"i

. . . . . . . .. . . ..ing .oe. ~ if.raeo oif rotc s 4 .K w.S.Vravaiabl fo prcesing -D iprals diert~onait)chaging 194).Ch, 5 nd i,



M? ALOMITHU bR I=R

NOLIDDUSIONAL DZSMITS POUIER TRANSFORM

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

By

Abderrezac Guessoum

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Electrical Engineering

Georgia Institute of Technology

March, 1984

%~



PAST ALGORITHM ORTH

NULTXDIK.ZONaAL DISCRETE FOURIER TRANSFORM

Approved:

Russell M4. Metsereau, Chairman

Monson H, Hayes, XX1

Eink 1. Verniest

Date approved by Chairman:



*I wish to express my appreciation to Dr. Russell 14. Mersereau,

my thesis advisor, for suggesting the problem, providing guidaaice and

* encouragement throughout the research and for providing me with -

*financial support through a contract with the Joint F !rvices

*Electronics Program. I wish to thank Dr. Monson H. Hayes, I"( and

Dr. Erik 1. Verriest for serving as members of my reading committee.

* - I also wish to thank Dr. Gunter H. Meyer and Dr. Dar-veig Ho

for giving me the opportunity to teach in the School of Mathematics.

I would also like to thank Charles E. Gimare foe answering my

numerous questions about the computer system.

Finally, I would like to thank Miss Cherri L. Cooksey for the

* excellent job ske did in typing this thesis.

S**- .... .... ... .... . * .



DrDICAZON

This thesis is dedicated to my parents, Kheira and M~ohamed
Guessoum.



iv

* ?ABLZ OF 4WIE

Page

*ACKNOWLEDGMENTS ....................... i

LIST OF TABLES ....................... vi

LIST OF ILLUSTRATIONS .................... vii

SAY.............................. viii

CHAPIER

I. INRDUTO ...................

* Historic Development
Scope of Thesis

* - Outline of Thesis

11. BACKGROUND MATERIAL .................................... 7

Matrix-DFT

matr ix-Cooley-Tukey Algorithm
Results from Lattice Theory
Smith Normal Decomposition

111. MULTIDIMENSIONAL IF" ALGORITILMS ....................... 52

The U D V Algorithm
Chinese Remainder Theorem for Lattices
Prime Factor Algorithm
The Hexagonal PWA
Rectangularization of the Indices
Extensions to the Matrix-Cooley-Tukey Algorlthg

IV. NEW FFT IPLEMENTATIONS ............................... 102

The MPPA Algorithm
The Indexing Problem
Evaluation of the MWFA and The U D V Algorithm
The Hexagonal PrA
Optimal Periodicity Matrix



?hWM OF CDUF!S (Continued)

CRAP1U Page

V. ODNCWUSIONS AN4D RECOMMEZNDATIONS .......... 136

Conclusions
tecomendat lona s.

APPENDIX ....................................................... 139

BIDLIOGRAPWTY....................................I...............148

VITA ........................................................... 151



vi

L LUST Or TAU

e.Table Page

1. wrTAs operations Count ................. 126

2. Time In Milliseconds For Rectangular OFTs ....... 127

3. Time In Milliseconds for OFT with U [0 2 ...... 128

4. Time In Milliseconds For DFT with a- 128

5. Time In Milliseconds for Matrix-N OFT ...................... 132

17



vil

LIST OF MLLSY3ATIONS

Figure Page

1. Sampling in the (ti1t2 ) Plane vith Sampling Matrix

2. Periodic Sequence with Period N a (N,.!2) .................. 11

3. Lattice Generated by a c [ .................... 24

5. Lattice Generated by [2 1.........o.......... ..33

5. Lattice ieneFred....................................... .. 33

7. Lattice ar~d Representative System for Ni t 61

S. Flowchart of the 2 by 4 Rectangular OFT .................... 62

9. Flowchart of the U D V Algorithm ........................... 63

W0. Regions (a) L,/N (b) L,/,.# (c) L 1 . . . . . . . . . . . . 91

11. Partial Flowchart of the MPFA Algorithm .................... 92

12. Flowchart of the (a) Matrix-R. OPT (b) Matrix-P 1 OFT..* 93

13. Flowchart of the MPFA Algorithm ............................ 103



, - -m .-.' _- ,V -. ,, ,- - - .,- . -, - ------. - - ' .. . . . -

,.. ......

viii

This thesis addresses the problem of designing efficient

algorithms for the evaluation of general periodically sampled multi-

dimensional discrete Fourier transforms.

The contributione of this thesis may be roughly divided into

three categories. First, a new mathematical formulation for the

multidimensional discrete Fourier transform is introduced. With this

approach the DI? indices are viewed as elements of a lattice

structure, and thus geometric techniques can be used to manipulate

them. Second, it is recognized that a crucial step in the design of

new algorithms is the formulation of a Chinese remainder theorem for

integer vectors. Next, this theorem is applied to provide an index

map which is similar to Good's prime factor map. Third, a general

class of fast algorithms is derived.

The Smith normal decomposition is used to factor the periodi-

city matrix which plays an important role in the design of

algorithms. This decomposition leads to a complete characterization

of the matrix DOTs. It is found that the DFTs cannot be uniquely

defined solely by their lengths, as is the case for one-dimensional

DrTs. A second attribute, the form, is needed. This form is related

to the non-equivalent Smith normal forms.

The first algorithm presented uses the Smith normal form to

decoopose a general DFT into a rectangular one. This decomposition

is shown to include no multiplications and consists only of input and

output permutations of the data. This algorithm is essentially use-

ful for short Dlis. The second algorithm presented is the Matrix

.

. . . . . . . . . . ..-

"........................
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Prime Factor Algorithm which Computes long transforms by nesting

short DrTU together. It is shown that every kind of nesting can be

used. A derivation Is given which solves the important indexing

problem for any particular form. A3 an example, a general length

hexagonal FM is designed. Finally, an answer is given to the pro-

* blem of finding an optimal periodicity matrix for a given finite

rectangular area sequence.

"tV
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CHIVB I

LISOUCTIOU

The development of fast algorithms for the computation of the

Discrete Fourier Transtorm (DPT) had a major impact on the field of

digital signal prot-esaing. The Past Fourier Transform (F-IT) has

-~ become an excellent tool for performing spectral analysis and linear

filtering 01i - 14). The motivation for developing FFT alg.,rithes is

rooted in the fact that tie direct computation of DFTs requires a

number of operations which becomes rapidly excessive for long

transforms. The savings in computations made by the MI is a direct

result of advantageous tradeoffs of control complcxity against

arithmetic operations count. Great efforts have gone into finding

efficient P7-Ts for ane-dimensional signals. Becaise the

multidimensional DFT has a more complex stru-*ture than its one-

dimensional counterpart, it has only recently become the subject of

active research.

Multi imens tonala-ignal processing has become a major area of

study 151. It has applicatons in important fieldn ranging from

Image processing, to antena design, to geophysics and optics. The

motIvation for developing multidimensional P7-Tas is higher because 7

multi-dimensional signals are typically characterized by massive

amounts of data and a large quantity of numerical compatations.

IJ
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Ejatotec De,,lopent

The first important Pl1 was developed by Cooley and Tukey in

1965 (61. They observed that the common strategy of *divide and

Conquer" could be used, in a power of two length DT. They evaluated

a large DF by dividing it into successively maller Drys, until

eventually only length two DPs are left, and the entire computation

is dominated by the so-called 'twiddleO operations between the

stages.

The Common Factor Algorithm proposed by R. C. Singleton in

1969 (7) is an extension of the same idea to the case where the

length of the OPT is arbitrary. It builds up a large OFT out of many

smaller OF? algorithms, connected by twiddle factors. Great efforts

have .one into reducing the number of twiddle operations in the

j Cooley-Tukey algorithm.

Another way of connecting small DFTs is to use the prime

factor index map proposed by I. 3. Good in 1958 (8). This method

eliminates the t.Fiddle factors entirely but requires the censtituent

small DT algorithms to have prime lengths. Unfortunately, there

were no efficient prime length DI~s at the time the algorithm was

first proposed. Good's index map was revised in 1977 when Kolba and

Parks proposed their Prime Factor Algorithm (PPA) (91. The key step

leading to the PFA was the introduction in 1976 by Winograd (101 of a

number of very efficient small prime and power of a prime length OFT

algorithms. Winograd combined the idea of converting a DPT to a

circular convolution, originally described by Rader Ili1 in 1968,

with minimum multiplication convolution algorithms he leveloped in

1975 (12).
p o
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The most important factor in the development of new algorithms

was the recognition by Winograd that DFTs can be viewed as operations

defined in finite rings. More specifically, the indices in the DF-

are considered as elements of a ring and it is the structure of this

ring which is exploited to develop new algorithms. This new number

theoretic point of view has allowed both derivation of some lower

computational complexity bounds and design of new and improved compu-

tation techniques.

The first method used to evaluate multidimensional DrTs was

the tow-column method which divides the computation into the compu-

tation of a number of one-dimensional DPTs 1131. A more efficient

approach is the vector-radix algorithm which is an extension of the

Cooley-Tukey algorithm to the multidimensional case 1141 - [18).

Nussbaumer (261, (27) used polynomial theory to extend Winograd's

techniques to the multidimensional case. All these multidimensional

algorithms apply to the so called Orectangular* DPTs which involve

rectangularly sampled signals. R. M. Mersereau 1191, (201 exhibited

signals sampled on non-rectangular rasters. Mersereau and Speake

extended in 1981 f21) the Cooley-Tukey algorithm to the general

periodically sampled multidimensional case. They have shown that

both the row-column and the vector-radix alqorithm can be derived as

special cases of their algorithm.

Scope of Thesis

Due to its theoretical as well as practical importance, this

thesis considers the problem of developing efficient algorithms for

I .l
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the evaluation of a general periodically sampled multidimensionat

DF'T. The contribution of this thesis may be roughly divided into

three categories. First, we formulate a new mathematical format for

the multidimensional DFT. More specifically, we view the DFT indices

as vectors in a lattice structure. With this mathematical

foundation, it is possible to use geometric techniques for manipu-

latinq these indices. Second, from the insight gained from this

approach we are able to recognize that a crucial step in the design

of new algorithms is the formulation of a theorem which is equivalent

to the Chinese Remainder theorem for integers [221. This theorem is

used to provide an index map which is similar to Good's prime factor

map (8). Third, we investigate the applications of this novel

approach to the design of new and improved algorithms. In

particular, we provide an extension of the PFA and the Winograd

Fourier Transform Algorithm 131 to the general multidimensional

case. When implementing the multidimensional PPA, it is found that

the multidimensional indexing problem is quite complex. We provide a

method which solves the problem in a satisfactory manner.

Outline of Thesis

The thesis is divided into several parts. In Chapter II we

begin by introducing the definition of a general periodically sampled

multidimensional DFT. Then, the matrix Cooley-Tukey algorithm is

explained, in order to have a better grasp of the difficulties

involved in developing multidimensional algorithms. Next, we give a

presentation of some results from ;attice theory that are going to be

.. 3.



- ... • . -~

5

used in the remainder of the thesis.. We will also reformulate the

multidimensional DFT in this new mathematical eontext. It is known

that the factorization of the periodicity matrix plays an important

role in the designof algorithms. To help in this factorization, the

Smith Normal decomposition is used. Moreover, using the Smith Normal

decomposition, we will be provided with a means for classifying

multidimensional DFTs. We find that the DFTs cannot be uniquely

defined by their lengths, as is the case for one-dimensional DFTs. A

second attribute, the form, is needed. This form is closely related

to non-equivalent Smith Normal forms.

In Chapter III, we start by presenting an algorithm that uses

the Smith Normal decomposition. The alqorithm transforms the DFT

into a rectangular DFT which can be evaluated by more conventional

methods. Then, a Chinese Remainder theorem for integer vectors is

proved. The theorem is used to provide an index map for a new class

of DFr algorithms. From this general class, we discuss in detail the

Multidimensional Prime Factor Algorithm (MPFA). The MPFA is just one

particular case of nesting the short DFTs (or modules) together. A

Winograd type of nesting results in multidimensional WFTA.

The indices in the MDT are vector elements and as such are

difficult to handle, both from an arithmetic point of view and an

algorithmic point of view. As an interesting byproduct of lattice

theory, it is b&own how to represent these indices in a manner which

Is similar to the reprerentation of indices of rectangular DPTs. for

this reason, we call this process the rectangularizaticn of indices.

It has practical applications in algorithmic design.

%° "
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In Chapter IV we consider the practical side of the thesis.

we construct and test a set of multidimensional FT algorithms. The

highly complex problem of multidimensional indexing is addressed and

a solution to it is offered. We describe both general length and

general form algorithms such as the U D V algorithm and the M.PFA

algorithm and a general length, but a specific form, hexagonal PFA

algorithm. The methodology offered will allow the design of any

other specific form general length algor. hm. We also consider the

problem of finding an optimal periodicity matrix when given a finite

area sequence and a particular DPT algorithm. Finally, Chapter V

concludes the thesis with a summary of the results presented in the

previous chapters and some recommendations for future research are

described.

It is important to note here that all the results that are

presented in this thesis apply to systems with more than two

dimensions. But for reasons of clarity and ease of presentation,

sometimes only the two-dimensional case is treated. However, in

these cases the extension from two to higher dimensions can be

realized in a straightforward manner.

'ji ..



BACUKGWG M&I3IAL

The tools needed for the analysis of the multidimensional DIT

are presented in this chapter. After some preliminary material

covering important characteristics of the DP1T itself, a derivation of

the multidimensional Cooley-Tukey algorithm is given which closely

follows that presented in (21. The discussion of the algorithm

serves two purposes. First, it provides an example of the concepts

involved and of the difficulties encountered when generalizing

one-dimensional results to the multidinensional case. Secondly, the

limitations of the algorithm motivate this thesis. In the third

section, some theorems and lemmas from a branch of mathematics, known

as lattice theory ire introduced. These will form the basis for

deriving a multidimensional extension to the classical Chinese

Remainder Theorem of number theory. The extension, in its turn,

forms a pillar on which a derivation of a new large class of OFT

algorithms will be based.

A simple, special case of the multidimensional OFT is the

rectangular OFT. Many relatively efficient algorithms such as the

row-column algorithm, the vector radix alqorithm and many generali-

zations (41, have been developed for the computation of rectangular

OPTs. Therefore, a procedsire which reduces a general OFT into a

rectangular one is hiqhly desirable. However, the reduction, to be

useful, shouldn't demand great cost nor great effort. Such a ptoce-

W ., .



dure vill be developed In the next chapter. It requires the

decomposition of the periodicity matrix into a special form called

the Smith normal form. In section four a theorem is proved that

addresses that concern. In addition, it provides us with an easily

programmable procedure for finding integer factors of integer

matrties. In the one-dimensional case whe, N (the length of the DFT)

is factored into relatively prime factors, factorization of the

periodicity matrix constitutes the starting block for algorithms. A

number of examples are presented to illustrate the different con-

cepts.

Matrix OFT

The Discrete Fourier Transform (OFT) is often described as an

invertible linear transformation vhich operates on complex valued 1
vectors. For each inteqer N-I, the length N DFT relates an N-

dimensional complex vector into another complex vector. It is

defined as:

N-1 2wnk
y(k - . x(n) exp(-jj-- I (1)

no

Equation (1) represents a one-dimensional OFT because the signals

x(n) and y(k) are functions of one-dimensional variables n and k

respectively. As expressed in (1), explicit computation of the OFT

requires on the order of operations which becomes rapidly exces-

sive for large N. The sxoplicity of equation (1) disquises the fact

that there are many redundant operations in such a computation.

These redundant operations arise from the fact that the weighting

A%°

- , .......
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function (the complex exponential) is periodic in both n and k with

period N. Furthermore, the equation may also exhibit complex conju-

gate symetries. Consequently with careful tabulation of

intermediate results, it is possible to substantially reduce the

number of multiplications required to calculate the N values of the

sequence y(k). This is the essence of all Fast Fourier Transform

algorithms (FYT).

The multidimensional DFT (matrix-DFT) may occur in two

different contexts. First, it applies to signals which are function

of more than one variable. For example, a sampled picture is a two

dimensional signal, since the light intensity varies with the two

spatial coordinates of the image. Other examples exist in areas such

as optics, x-ray crystallography and antenna design. Second, there

is often a direct relationship between one-dimensional DF$ and

matrix-DFTs. indeed, a matrix-oY? can be derived from a

one-dimensional DY? and vice-versa. Two commonly used FFT

algorithms, the Prime Factor algorithm (PFA) and the Winograd

alqorithm, are based on a special mapping of one-dimensional signals f

into multidimensional ones.

As in the one-dimensional case it is the inherent periodicity

of the weights in the matrix-DYr which is to be exploited in order to

produce efficient algorithms. But since each dimension, in general,

, has an effect on the other dimensions, this exploitation Is not

straightforward. Thl multidimensional nature of the signals require

vector and matrix arithmetic for compact notation and for the ability

to readily apply previously derived results for the one-dimensional

...:
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DPT. tt is known that there are many different ways for

representing, or sampling, multidimensional bandlimited signals

(5$. Nersereau has developed a matrix description of multidimen-

sional sampling and digital signal processing 120). A summary of

these portions of this background which are needed to understand the

thesis, is given be.low.

Let xa(t) denote an K-dimensional analog siqnal where t is a

vector of 1 independent variables. A sampled representation of this

signal is given by:

x(n) - x(V n) (2)!a

where n is an intoger vector of dimension H and V is an KKKM matrix of

real numbers that defines the locations of the sampled values (Figure

1). In order to have a nondegenerate set of samples, the columns of

V must be linearly independent. Different matrices V will lead to -
-

* -different sampling strategies. by careful choice of V a represen-

tation can be obtained which results in a minimum sampling density.

The most common sampling scheme is the rectangular one which

- corresponds to the case where V is a diagonal matrix. In the 2-D

rectangular case:

n- (n1  n 2 )

./

/'.

.%. 
I ..... . .". 1 2

42
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x(fl) -x (n1 TV n2 )

a T2
where *denotes the transposition operation and T, and T2 are the tow1~ ~ and column sampling periods.

Another scheme of practical interest is the hexaqonal scheme

discussed by Mersereau 119). For this schemes the sampling matrix V

has the form

It has been shown that hexagonal sampling is optimal for cir-

cularly bandlimited waveforms (23). It requires 13.4 percent fewer

samples than rectangular sampling.

The Discrete Four ier Transform is commonly introduced by means

of periodic sequences. Suppose ;(n) is a periodic sequence of

samples with periodicity Ni.e.

x(n) -x(n *N 0) (3)

. . . . . .
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where t to any integer vector and N is on integer matrix whose deter-

minant is nonzero. It follows thdt 2cq1) is periodic in the M

different directions which are defined hi he vectors formed from the

columns of N (Figure 2). Lot IN denote a region in the n-plane con-

taining one period of x(n). I~ is not unique but always contains

Idet(H)I samples of x (n) (where I *fdenotes the absolute value).

x~n) can then be exactly represented by a set of Fourier series

coefficients which will be denoted by X(k), where

x(n) -___X ~ )ep(jW

det(N)I XkcZxlj~k n

X(Ir k ) exp[-j2wk*N nj

The sequence of coefficients x(k) is periodic with periodicity

*N' and JN denotes a set of samples in one period of X(k).

Now, let x (n) be a sequence with finite support on I No i.e.

x(n) is zero for values of n not in the reqion IN' Next, construct a

sequence x(n) of period N which io equal to x(n) in the region I.

Thus, x(n) can be completely specified by ;(n) and vice-versa. if

X(k) is defined as one period of XWP) the discrete Fourier series

coefficients of x(n), then x0n) can be related to XWk and

* *vice-versa. This relation defines the Discrete Fourier Transform

(D'S %.

;A.
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z(n) - dtNt£ XCk exp(+J2u1c N n)

-N
(41

X W x n expl-j2wkN n I
nCJN

The numbers X(k) can be interpreted as samples of the Four ier

transform of the sequence x(n). The camplinq matrix in the Fourier

damain is then (51:

R (2w 14

The matrix-OFT can be used to compute a circular convolution

of multidimensional signals. This is the connection between the DFT

and linear filtering that is exploited in order to create linear

r filtering algorithms with the DFT. Other uses fo~r the OPT, along

with many of its interesting properties, are discussed at length in

general references [I) - 13).

This thesis is concerned with methods for evaluating (5) for

an arbitrary periodicity matrix No Most of the methods that exist

treat only the case where N is a diagonal matrix. In that case, the

* ~matrix-OPT is said to be rectangular because it relates a rectangu-

*.larly sampled signal to its rectangularly sampled Fourier

transform. In this case

*C: ..
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and equation (S) becomes:

nk,
a ~~~X(kI9k25.kM)- 1 . x(n19 n21 .. n exp(-J21 .j-

A I n2 1

exp(-j2v n2K21*** exp(-j2w -7-1
2

The kernel (exponential) has been factored into independent

kernels. Evaluation along any dimension can therefor* be done inde-

A' pendently of the other dimensions. The cow-column algorithm is an

example of such an evaluation. With this algorithm, one-dimensional

OPT& are computed sequentially with respect to each variable n. for

each value of the remaining variables. Another approach is the

I vector radix Fri algorithm in wnich the DPT is broken down into suc-

ceisively smaller OPTS until only trivial OPTs need to be evaluated.

* .~A number of effici.-nt algorithms have been developed more

recently 1b) - 17). Among them are the Prime Factor Alaorithm (PFA)

and the Winograd Foucier Transform Algorithm (WiTA). Both are based

on a reduction of long length OPTs into a number of smaller ones.

Moreover, the small DPTs (called modules) which are to be combined

m.are constructed to be highly efficient. Their efficiency is the

-3
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result. of two developments. One is the conversion of the DFTs into

circular convolutions by a method initially introduced by Rader

A 111). The conversion is done by a simple rearrangement of input and

output samples. The other development is the presentation by

Winograd of minimal algorithms for the computation of convolutions.

The PFA and the WFTA differ in their internal orderings of

operations, which affect their overall operation counts and program

control complexity. A generalization of thcse two algorithms will be

given in Chapter 111.

An important example of a non-rectanqular matrix-DF is the

two-dimensional hexagonal OPT which has been studied in 119; the

periodicity matrix has the form:

N [N 

,2.

Nq 2

where N, and N2 are integers. A row-col'omn type and vector radix

type algorithm for the hexagonal OFT are given in 119). It is shown

that, for the same frequency resolution, the hexagonal OFT requires

25% less storage capacity and 25% less computation than its rectangu-

lar counterpart.

Matrix Cooley-4Tkey Algorithm

One of the earliest P7T? algorithms was the popular Radix-2

algorithm known as the Cooley-Tukey F?? (6). Mersereau and Speake

have shown that algorithms of the Cooley-Tukey type exist for the

- . ,.c
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matriz-DfT whenever the periodicity matrix N can be factored into a

non-trivial product of integer matrices. A presentation of this

algorithm follows. It will help us gain some insight into the con-

plex structure of a matrix-DI and it will serve as a steppin stone

for the development of more efficient algorithms.

Consider again the matrix-N DPT given by equation (5). Since

Idet (N) I (absolute value of the determinant of the matrix N) is a

non-zero integer, it can either have the value one, a prime number or

a composite number. We then say that N is a unimodular, prime, or

composite matrix respectively. If N is a composite matrix, then it

can be factored into a product of two integer matrices:

S-P Q .6)--'N--P-

where neither P nor Q is a unimodular matrix. It should bc noted

that this factorization is not unique since

N- (P E) ( - Q)

provides another factorization of N for any unimodular matrix Z. P.

programmable method for factoring integer matrices will be presented

in section four.

An integer vector m is congruent to en integer vector n with

respeft to the modulus N if there exists an integer vector r such

that"

OP

PI



mn +N c

We denote a *()) if m is congruent to n (modulo N) and is con-

tained inIN

Any vector n in the region 1. can be un~iquely expressed as n

(? £) )N where p belongs to a set Ipand S. belongs to a set

I* Q, I contains ldot (P)I vectors,.I contains Idet QI vector~s.

By expanding the indices and the exponential in equation (5) ,

the DFT can he decomposed into two parts:

C CZ -(!Z ,xjj~(L+')_ (7)

X(Qlm+l) a .C(p.,i)expf-j2w1 N IeP -J2wm'P PI

~cP

This algorithm decomposes the DII into a series of Idet (P)tI

matrix-Q Me~, a series of Id~t (Q)I matrix-P OT9s and Idet (N)I

twiddle factor multiplications (multiplications by exp1-j.L(21N -1 )1.

These relations represent the first level of decomposition of -

a decimation-in-time Cooley-Tukey PIT algorithm. It is clear that a

different factorization of N leads to a different decomposition and

therefore to another algorithm. Thus the matrix Cooley-Tukey

algorithm is in fact a collection of algorithms which differ only by



* 19

the way the periodicity matrix in factored. How to f actor N to

*obtain a suitable algorithm is an open problem. A tentative solution

* . to that problem will be given in the next chapter.

The number of complex multiplications is often given as a

* .*measure of comparison between algorithms. Let CN denote the number

of complex multiplications for the matrix Cooley-Tukey FFT algorithm,

then

*CN wdet PI C +lIdet QlC + ldet NI 8
N Q - P

.. where C Q and C represent the computational complexity of the

matrix-Q DP? and the matrix-P DFT, respectively. The final term in

*equation (8) corresponds to the number of mult iplicat ions by the

twiddle factors.

Both the row-column decomposition and the vector radix

algorithm for rectangular DF~s can be shown to be special cases of

-: I the matrix Cooley-Tukey algorithm. For example if

i101
0 N2

then a row-column algorithm corresponds to the factor izatione

P Q~ 01 r 0' O

2-3



20

while if N1 -2 N and Hf in a power of two, vector-radix (2x2) FFT

* .algorithm In a result of the factorizat ion

It is known that the computational complexity of a one-dimen-

sional DFT is ultimately linked to its length. In the

multidimensional case, it is intuitively clear that the computational

complexity depends not only on the length of the matrix-OFT but also

* Non the form of the periodicity matrix N. For example, it is known

that a OFT with perijodicity matrix

can be evaluated wti±h less computations than a DET with periodicity

although both have length four. An open problem is then how to

* ~ . classify matrix-OPTs both according to length and form. An answer to

that problem will be given in section four where it is shown that the

39
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/

* multiplicatiwe :omplexity of a matrix-N DFT can be deduced from the

Smith Normal decompoition of N.

The matrix Cooley-Tukey algorithm uses one particular indexing

scheme whereby the indices n and k are mapped to a pair of indices

and (kj,k2) . It is interesting to ask whether a different

scheme might not lead to a different class of algorithms. It is to

answer this question that we have been let to consider lattice

theory.

A lattice structure, as it will be seen in the next section,

integrates both the vectorial nature of the indices and the inherent

periodic nattire of. the matrix-DFT.

Results from Lattice Theory

The new algorithms and results that will be proposed are de-

rived from geometric number theory, and some knowledge of this topic

- .* Is necessary to understand these algorithms and to use them in

* practical applications. For this purpose, this section is intendeu

to familiarize the reader with geometric number theory. From the

insight gained we will be able to formulate and prove an important

theorem which resembles the Chinese Remainder theorem for integers.

-'.The new theorem will play a central role in the process of qeneraliz-

Ing both the Prime Factor Algorithm and the Winograd Fourier

Transform Algorithm to the multidimensional case. Additionally, we

will be able to find a procedure by which a DIT with an arbitrary

-- 'periodicity matrix is transformed into a form where the indices are

rectangularly distributed. Using this transformation the DFT can be

converted into either a one-dimensional DIPT or into a rectangular

-matrix-O?.

* .4M
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T2 motivate the need for lattice theory it is useful to ex-

plo* the relationship between one-dimensional DrTs and number

theory. All the existing one-dimensional 77? algorithms result from

appropriate manipulations of the indices of sequences which are into-

gers. For example, in an N-point DrT the indices belong to the

abstract object consisting of the set of integers aO.1.2,...,r-tJ and

the operations + and a with respect to a modulus, N. This abstract

structure is called a ring. Equivalently, the indices can be consi-

dered as belonging to the set of all integers together with an

addition operation and a congruence relation. The congruence cela-

tion is defined as follows: two integers n, and n2, are congruent

modulo N, denoted

n- n2 (mod N)
I2

if (nl-n 2 ) is a multiple of N.

The second structure above is an example of a mathematical

object called a lattice (or discrete vector group. For the multi-

dinensional DFT we can define a lattice structure but not a ring

structure, since there is ro useful multiplication operation between

vectors. We can, however, define a structure in which the basic

operations are addition of vectors and multiplication of a vector by

integer matrices. This structure is called a module (or vector space

over the ring of integer matrices). Note that a ring Is Itself a

module but the converse is not, in general, true.

) "

/3 'I ,.
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In the following we define a multidimensional lattice and

*resent some useful theorems.

Definitions Let !jI,12#....am be N (N>l) linearly Independent vectors

in the M-dimensional real Euclidian space. The set of vectors

x 1311+ u21 2 + +*" +ua_, (9)

with integers ul,...fun is called the lattice with basis.L,...,"

Equations (9) can be written in compact form as

x *Au

Swhere A - lj .-... ) is an M44 matrix and u - f(u u2... u1 )' is a

column vector of integers. The lattice is called the lattice

generated by A and is denoted LA. An example of a lattice is the set

of all vectors with integral coordinates. It is generated by the
vectors ew,....,e where is an -vector with 1 at position i and

0 elsewhere, I.e. e * (0... 00...O)'. The lattice is denoted L,1

where I is then the KMN identity matrix.

Relation Between Different Bases of a Lattice

Since we consider LA merely as a set of points, it can be

expressed in terms of mor*e than one baais. For example (a-c, b-d)-

(-c,-d)' and (ab)', (cd)' are both bases for the lattice of Figure

3. ,.

"o . . . . _
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d n2

[a c

Figure 3. Lattice Generated by d

2 
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Consider a lattice generated by, 4 !.. and suppose that

the vectors Al, are also a basis for the lattice. Then

the Laj can be written as a linear combination of the t 4I:

a1 - 1kb + h ib 2+ .+h b (10

where 1h. I are all Integers. However, since Lai is a basis, we

must have

-ti gil_ + gia2 + + .. g a (11)

where the Ig Iare all integers. Suptituting for L ~1 in (10) from

(11) we find La)as a i1-acar function of ail. since the l.i are

independent, the matrix of the resulting transformation must be the

identity matrix. Therefore the product~ of the matrix 1h ij by th~e

matrix (gUI1 must be the identity matrix, so that 1h1Ij is the in-

verse of JiqjJ and det(h11 I is the reciprocal of det(gi13. However,

*these determinants must be integers since their elements are inte-

gae. It follows that det!gjI det(h1 I - *I. Thus (hij) and

jj are unimodular matrices. We have just proved that

if LiIand L form a basis for the same lattice, they must be

related by a unimodular linear transformation. The converse is also

true. if Lalis a basis and Lf~l is obtained from Lai by a uni-

*.modular transformation, then Lblis a basis. This follows easily

from the fact that the inverse of a unimodular matrix is unimodular,

so that Lai can be expressed as a linear combination of
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the (ij with integral coefficients and therefore, ii form a basis.

This completes the proof of the following theorems

Theorem Is Let ~be a basis for a lattice. A necessary

and sufficient condition that another set of independent-

vectors {bk...., Ij form a basis of the lattice is that ({i. may be

obtained from by a unimodular transformation.

This shows that there is a one-to-many relationship between lattices

and matrices. To each nonsingular matrix A there coLresponds a

single lattice L generated by its columns, but for each lattice L

L
there corresponds a whole class of nonsinqular matrices. Two

matrices A and B belong to the same class if and only if A B U

where U is a unimodular matrix.

Sublatt ices

Let LA be a lattice and L. be another lattice contained in LA;

i.e. every vector in L8 is also a vector in LA. L5 is then called a

sublattice of LA. Then any basis of L. can be written as a linear

combination of vectors from the basis of L:

b i - ... qi'

where fgi, } are all integers. Denote the absolute value of det tg9ij

*.as m. Then m>0 since the 1 1l are linearly independent and m must be

an integer since are integers. If m-1, by the previous

theorem L14 is also a basis of LA and so LA and La are the same

,-.. .... "

..* . * ................-.. 7- .
• ~ ~ ~ ~ ~~- . . ...- +-+.. .- ,"
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lattices. The number m Is uniquely determined by LA and I.~ because

choosing any other basis for LA or LS Is equivalent to multiplying

the matrix Igjj) either on the right or on the left by a unimodular

matrix and this multiplication does not change the value of the

determinant of the matrix. a is called the index of L8 in LA. we~

have just proved the following theorem:

Theorem 2: Lis is a sublattice of LA if and only if B -A C for some

inceger matrix C. .

As an illustration, let LA -L, be the lattice of integer

vectors with basis (1,0)' and (0,1)' while LB is the lattice with

basis vecors (2O0P and (0,3)'. It is easy to shown that L3 is con-

tained in L. and the index of LB in L I is 6.

In fact if N is any integer matrix then T.N is a sublattice of
L, (the lattice of integer vectors) since the following equality is

always true

N~ I N

Greatest Common Sublatt ice

An Integer matrix A is said to be a left divisor of an integer.'

*matrix B if there is another integer matrix C such that

BA C
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At the a.. time 8 Is said t* be a right multiple of A. SimilarlyC

Is a eight divisor of B and B Is a left multiple of C.

Pot two integer matrices A and B there always exists an inte-

get matrix D call@,! the least common eight multiple (lcrm) of A and

B. D is defined by three relationships.

11 D is a right multiple Of A, i.e. D -AU for some inte-

get matrix U.

2) D is a tight multiple of B. i.e. D -B V for some inte-

get matrix V.

3) Whenever 0 is some right multiple of A and 8 then G is

-*also a right multiple of D, i.e. Ga D W for some inte-

Ger matrix W.

This last property explains the notion of a least common right

54 multiple.
The construction of the lcrm is done as follows: first con---

sider the 24x314 matrix

then find a unimodialar matrix X of order 21M,

r/



29

I such that

It can be shown (241 that the matrix X can always be constructed

using elementary row and column operations. Then. we have the rela-

tions

I 
A X +*DX *0

-12 -- ;;22 -

1 -12 -- 2 2

where D is the 1cr. of A and B.

An an example lei

0 Then wefind

t 
09"
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1 -2 4 6

0 1-4 4 "

~wtFrom X.we compute

IL
8 1

We return now to lattices to introduce the concept of a "

greatist common sublattice. Let LA and La be two lattices. Then the

set of vectors common to the lattices is a lattice LD called the

greatest coamon sublattice of LA and La. it may also be defined as

that sub-attice of LA and La which contain3 every common sublattice

of LA and La. It is interesting to ack for the relation between the

matrix 0 and the matrices A and B.

Theorem 3s If D is the lccm of A and B then LD in the greatest

common sublattice of LA and LB.

Pt of_ LD is a sublattice of LA, thus by theorem 2, D - A I1 for some

Integer matrix U. Similarily D n B V since LD is also a sublattice

of LB. Consequently R is a comon right multiple of A and B. Again,

because of theorem 2, L0 is s aublattice of LA and La. Therefore LG

is a sublattice of LD sincs LD contains every common sublattice of LA

. ' "



and L.. Thus G D V for some integer matrix Vt this finishes the

proof, since then D satisfies all the three necessary conditions for

a Icta.

Congruences Relative to a Sublatt ice

Definitions Let n and m br' two vectors belonging to a lattice LA.

Let Le be a sublattice of LA. n is said to be congruent to a modulo

3, written

n S m (modulo 8)

if (n-rn) is a vector belonging to s

This relation defines a set of equivalence. classes called the

set of residues modulo B. A class (n) is

(ii) * £. LA such thar m Bn (modulo 3)i

This set of classes is denoted LA.B Thus, two vectors belong to the

same class If they are congruent.

As an illustration consider Figure 4 where L& Lit the

lattice of integer vectors. LB is the sublattice generated by the

vectors (2 0)' and (0 3)'. Then any two integer vector, that

occupy the same positions inside the rectangles are congruent. If we

choose one vector from each class we get a set of representatives.
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* For example, all the heavy dots Inside the first rc*tangle in the

first quadrant consitute a complete set of representatives. Figures

5 and 6 Illustrate another example of residue classes. In the next

subsection we will see how to choose a useful set of representatives.

Theorem 4: Given any N independent vectors b1 .. ~ belonging to a

lattice L (the jb I do not necessarily constitute a basis for L),

there exist vectors cj# ... sc, such that

* E2 N !!l t !2A~

S14  _hlk *..

where the 1hi1 are real positive numbers which satisfy

ii i

0 C h~ < hi

and such that s2,.. c form a basis for L. Thus C B H where H

is an upper triangular real matrix.

* .~ Equation (11) can be Inverted to gives
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Figure 5. Lattice Generated by

V7V

Figure 6. Representative System of Residue Classes for

the Lattice in Figure 5.
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The sketch of the proof can be inferred from the following

example. Let L be generated by (1,0)'1, (1/2,1/2) '. Let .1..be the

vectors (5/2,5/2)1, (-3,9)*. How can we find c1, 52?

Let t, be a positive real number. Consider the values of t

for which to, 1 belongs to L. The smallest such value for t I is 1/5 L

and it is clear that any such tj may be written as q1/5 where g, is

any integer. Now consider the values of t 2 and t 3 , both real posi-

tive numbers, for which t2 a 3 t belongs to L. The smallest

possible value for t3 will be 1/12 and t 2 might equal 1/10 so that we

get the vector (0,1). The vectors and E/2./2)' an

obviously form a basis for L. Moreover we have:

1 1-
Z2 10i 1 12 A2

and thusa 2 -- i*1

* .'*
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The method of proof in the genieral case is the ese and will

not be presented here. For a complete proof see 1251.

Main Theorem:

We are nov ready to present the most important theorem for out

purposes.

Theorem 5t Let Le be a sublattice of LA. Then

1) the number of different residue classes msodulo 8 is m, the

index of L~A in LB

2) The set of vectors ul Et + u2 S2 + *.+ uKS vhere

are constructed as in the previous theorem

ard where u1, u2v... #uM are integers satisfying:

o 1  9 11

constitute a representative system of residue classes

L.

As an example consider the lattice of Figure 5 generated by

f,!!)where Ej- (4, 1) and 2! - (1, 2) . A representative

system of residue classes is given, as predicted by the theorem, by

'9 1 11 u2E2 where c, (1, 2)1, C2 *(,1)', ul 0, U2

O,10...6f (Figure 61.

~5,
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Proof:I Suppose 1b. I a basis for La. Then as' in theorem 4 we con-

struct f rom it a basis for LA. Let these basis vectors for LA

be IJ.where by (12)

C1.h11 1 *hi 2b2 4 .. h b 13

Inverting these equations. we find that is expressed in terms

of fail by a triangular matrix as follows:

b.~~~ g .. q.c. (143

where gi and all the g are integers since c.is a basis for

LA. Note that m, the index of LA in L., is the determinant of the

gi and, therefore since the matrix is triangular, m-911q22 ... 9W~

A_ We now set up a representative ry'stem of residue classes

modulo B. Consider the vectors

1-1 "2S2 +(+5)-

where

0 u < g~ 1 i 1#2#. ...,M.

There are exactly 911922...~ 9- m such vectors. We must prove any

vector in LA is congruent modulo B to a vector of the form (15) and R

that no two vectors of this form are congruent to each other. Let x

V. .................................... * . . *<.. *.. .*.. .. i. .. . .. .
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*be an arbitrary vector in L&, so that: x 9g1E + 92S +.. + 4

where the 91 are Integers. Divide SM, by gn and get

gk qgM +

where 0 LIM~ < gM. Nov using (14), we find that

-~ 9 1SI + 92E2 + +* * -M-1 + Ns

where the 9 are integers. Proceeding in the same way* we can to-

duce 9 - and so on. until finally we have

-q 1 1  q24 2 - m q..4 i + U '1 2 2  +. ux

or x u c *+ u2 + . 4u A modulo B.

Suppose two of the vector defined by (15) lie in the same

residue class, that means their difference, z, lies in LS. Let the

coordinates of z be Jkwhere

(9k k gkk16

Suppose Jk is the last coordinate not zero. Since z is in L.0

*it is an integral combination of ±Lb1  , .. ,b and therefore the kth

c-coordinate Is equal to or greater than 9k.This contradicts (16)

. I
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and therefore J.k is Sero and z must be the zero vector. This com-

* plates the proof of theorem S.

Bmith Normal Decomposition

We hay. previously observed that factorization of the

periodicity matrix K plays an important role in the development of

* *. FM algorithms. We have also roted the need for a classification of

matrIx-DFTs according to son. quantitative measure of complexity.

Por these reasons, consideration is now given~ to some algebraic con-

cepts concerning integer matrices.

* ~ . Eleentay ' _w perations

We consider the followinq elementary row operations performed

on a M 144 matrix N:

a) the interchange of two rows

b) the multiplication of a row by -

c) the addition of u times one row to another row# where u is

an integer.

Each of these operations corresponds to multiplication of N on

the left byf a suitable unimodular matrix. Thus

O:: 1
* 0

0



Interchanges toits 1 and 21

1 
0 

0 

.

0.0 1

multiplies row I by -11 and

U

adds u times row 2 to row It wher* u is an integer.

The above matr ices, which effect elementary operations, are

called elementary matrices. Elementary column- operations are defined

In entirely analogous fashion and 'they correspond to multiplication

of N on the right.

We present now the main theorem in this section.

Theorem 5: (Smith Normal rorm)

Every MN integer matrix N can be written as

:A VuU D V

where U and V are unimodular matrices and D is a diagonal matrix,

er11
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a0 0

D 0d2 0

such that d..d* are nonzero integers and d divides

Proof: We vwill only give an outline of the proof# a mare complete

proof can be found in (28). We vill illustrate the proof with an

example which we develop as we go along. Let

L

24 -70 -24]I

-12 36 12'

We ayasum tatN I n I contains a smallest nonzero element,

which may be brought to the (101) position, namely, to the first line

and the first column, by suitable row and column interchanges. Let h

re~reuent this term. In out example h -- 8, and by interchanging row --

one and row two, ye obtain:

r 8- 40 121
2 -70 -24

12 36 12j

We replace each term of the first row and the f irst column by the

remaining IV I) defined as follows

o~-5E7
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n u h +V.

2* - ....,

u and ui1 being integer numbers. Por instance,

40 a -5x(-8) + 0
-12 a hIx-8) + (-4)

L

This amounts to subtracting u~j times the first column from

each of the columns In which the first element is not null. This is

obtained by post multiplying by an appropriate elementary matrix. It

is also equivaient to substracting U1 1 times the first row from each

row in which the first element is not null. We obtain this by pre-

multiplying with an elementary matrix. This process is repeated

until all the elements in the first row and column other than the

(1,I) element, are made zero. Denote this new matrix L - lj. In

our example, we obtain

-4 24 0J

We repeat the process by bringing tLa element 4 in the (1,1)

position. Then

.....................
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.7 ' ~ 0 -4 -241

Assume that the submatrix of L obtained by deleting th~e first

row and column contains an element I~ which is not divisible by

I~ Add column j to column 1. Column I then consists of the ele-

ments III# 12j#*.1 ,l , Repeating the previous process we

can replace 11, by a proper divisor of itself. In the example above,

4 doesn't divide 50, so we add column 1 to column 4. We have

F4 001
so 5 0 s0o

1-24 -4 -24.

which, when reduced, leads to

[2 001

Thus we must finally reach the stage where the element in the (1.1)

position divides every element of the matrix, and all the other ele-

ments of the first row and column are zero.

2The entire process ts nov repeated with the submatrix obtained

by deleting the first row and column. Eventually, a stage Is reached

when the matrix has the required form. For our case, we obtain

1t I

%,



43

r2. -.0 4 0---

[ 0 12.

Several facts about this form will be needed.

a) D is unique and det(D) - Idet NI = d1d2*... dm .

b) This form defines an equivalence relation in the space of

integer matrices. Two matrices are equivalent if they

have the same normal form. Thus an equivalence class will

consist of all the matrices whose normal forms are alike.

c) It will be useful for us to know the number of equivalence

classes for mtrices with a given determinant. This

number, which will be used for classification of DFTs,

will be calculated in a Latter section, after we give some

properties of the numbers 1dij. These quantities are

known as the invariant factors of N. Thus 2 matrices arct

equivalent if and only if they have the same invarianc

factors.

R elaentary Divisions

Let tl,t 2 ,... Otl be a complete set of primes which occur as

divisors of the invariant factors {dil. Then for appropriate nonne-

* gative integers ei we have

.1 .n
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121

al 1 2 ... I (7.

21 e22 e21

d2  t 2  ... I

eal R2 eml.d -t tz  ...t :
Ist 1  t2  *t 1

It is clear from the divisibility of the invariant factors

that

0OCe 4C e~j (.. e .jlj 2

The set of prime powers t 1 , I C i m *, 1 4 j • 1, including ghpeti-

tior.3 but excluding those with zero exponents, is called the set of- 1

lementary divisors of N. If the exponents which occur in this set

all 1, then N is said to have simple elementary divisors.

Given the set of elementary divisors, we can reconstruct the

tariant factors because of the ordering condition (II). Thus if,

* e~umaxe , 1 j l

1 C i •'...'

then d. must be t e2 .. t@. Deleting tioese prime powers from the

set of elementary divisors, we determine d*.1 in similar fashion, and

. . . . . . . .. . -!, . .



so on. Thus 2 matr ices are equivalent if and only if they have the

same eleaftntary divisors.

For example, suppose the 4x4 matrix N has elementary

divisors 122 2 2 333335571. Then *23.3 3.5*7. Deleting

23, 3 3, ,7, we have the aet 12,2 2 2 2, 3,3 3,51. Then d3 *22. 33. 5.

Deleting 2 2, 3 3.5, we have the set 12,2 2.31. Then d2  2 2.3 and

finally d, 2. Thus the normal form of N is

222.3.

222~3 23.255

The next theorem is useful if an equivalent diagdnal matrix is

known or if the given matrix itself is diagonal.

Theorem 5St Suppose that the integer matrix N is equivalent to a

diagonal matrix

Then the prime power factors of the big 1 4 i C m, are the elementary7

divisots of N.

%ZI



Proof: Le!t t be any prim. which divides some bit 1 4 1 4 a. Arrange

the b, according to ascending powers of ts

b t *

e2
b1 2  t 82

b ist t m

where the a, are relatively prime to to and 0 C el 4 e2-...C4 em.

Then clearly the exact power of t that divides dk# 1 4 kC 4m,
e

1t*Thus t is an elementary di%,isor, 1 -C kC C6m. Applying this

argument for all primes t which divide some bit we obtain the result.

-\ As an example, assume N is equivalent to

[26 18]

thn ice 20 as 22.5, 6 -2*3, 18 -2.32 the elementary divisors of

Nare 2,2,22',332'5. Thus the Smith Normal form of N is

~?- ~%
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[2 2-3 223.5u 6

We present 2 mote examples that will be considered again in the next

chapter. First, the matrices

are not equivalent since they have different prime power factors,

namely (3,31 for the first matrix and 13 21 for the second one. The

other example is that of the matrices

wher p and q are relatively prime numbers. Their prime powers are

the union of the prime powers of p and the prime powers of q. So

those 2 matrices have the same prime powers and hence are equiva-

lent. That idea was exploited by Good's mapping theorem 181 in the

development of the one-dimensional Prime Factor Algorithm.

InaltiplicativitX of the Smith normal Form

Let N be a nonsingular integer matrix such that N P g* where

* .rP ad qare nonsingular integer matrices. Let dk(e dk (P), dk(Q)

denote the kth invariant factors of NPand QI -G kc m. Then the

following is true.

I '7
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Theorem 8: dk(N. is divisible by dk(P) and by dk(Q) for I C k < m.

The proof is quite involved and can be found in [28). From

this theorem we easily deduce,

Theorem 9: Suppose the determinants of P and Q are relatively

r prime. Then the normal form of N - P Q is equal to the product of

* - the normal form of P and the normal form of Q.

Prcof: Since det(P) and det(Q) are relatively prime and dk(P)

divides det(P), dk(Q) divides det(2), it follows that dk(.P) and dk(Q)

are relatively prime for 1 4 k < n. Then the previous theorem

implies that dk(N) is a multiple of dklP) *dk(Q) for I e k 1C m. But

d IN) "d2 N)...dm_(N) - det (N). Thus dk(N) - dk(P) dkQ). This com-

pletes the proof.

r..

The theorem is definitely false if det(P) and det(Q) are not

relatively prime. For example if

11 0i

then the Smith Normal form of P and Q is

, .0 ..

0 0

,. o ~-67 "
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but

whose Smith Normal form is

while the product of the normal forms of P and Q is

The SWth Normal Porn Class Number

We are now going to count the number sit) of equivalence

* classes of mrA matrices of fixed nonzero determinant t. Let

tit t: ... tl

be the prime power decomposition of t. Then sit) is just the number

of ways of forming

-, t
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11() 12 11
I'M tIt 2  ...tl

21 e 22 21
d2 i") -ti t2  ... tl

*uI .2 al
a3W M t1  t2  .t

where the nonnegative integers eil satisfy

OC ej Ce Cj C*m (18)

*j a j +. e - e

roc each j such that I C j C 1, equation (18) has p (ejum) solutions

where piej m) is the number of partitions of m into parts not exceed-

ing ey, or equivalently, into at most ej parts. Thus

sit) p(e,,) *pie 2,M) .. p(e1.m)

As an illustration, let t -16 and m 2. Then t *24 and so o,

4. Thus

* .. at) *p(4,2) -3

P-69

(09



Indeed the equivalence classes are represented by the 3

following normal forms:

0 6 0V 4O

. . . ... . . . .
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The mathematical concepts and results discussed in the

previous chapter will be used here to derive some new results. As

already pointed out in the introduction, one significant contribution

of our work is the formulation of a-mathematical context that permits

a better understanding of the qeneral multidimensional DFT (HOTM.

More specifically, it will be seen that the indices of the multi-

dimensional DT can be reqarded as members of a lattice structure.

Also, residue classes for lattices are seen as a mean for nperating

on these indices. From the insight gained, a host of new results can

be developed. Our aim, in this chapter, is to demonstrate this by

, * deriving a set of new alqorithms for the evaluation of MDFTs. First,

we present in section one an indirect method which transforms a

- general 14DFT into a rectangular DFT that can be evaluated in a

conventional manner. Apart from its obvious practical usefulness,

this method has a significant theoretical importance. Indeed, it is

used to demonstrate that the MDFTs can be compared in terms of the

number of multiplications. In addition, using the discussion in

section two of the previous chapter on Smith Normal forms, a classi-

* fication of MDITs according to both length and form is provided.

This classification, in its turn, will have a great impact on the

design of practical algorithms.

Ac... ,

" :1-'7: :'

....................... .

. .o-.. .
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It is expected that a more direct approach to the problem can

make better use of the mathematical ideas discussed in Chapter 11.

Our aim is to generalize directly the methods used in evaluating

one-dimensional DFTs. Most of today's efficient one-dimensional FFT

algorithms are based on a theorem, in number theory, called the

Chinese Remainder theorem (CRT) for integers. An equivalent theorem

for integer vectors is needed to be able to develop similar

algorithms for MDFTs. After an intensive search in the mathematical

literature, no such theorem was uncovered. The most general form of

the Chinese Remaind.r theorem was found to exist for commutativ"

modules (29). Unfortunately, in our case, lattices are noncommu-

tative modules. Thus we have been led to prove, ourselves, a Chinese

Remainder for lattices. A formulation and a complete proof is given

in section two.

In section three we get to the core of the problem which is

the design of FFT algorithms. Using the theorem from section three,

we derive a general class of FFT algorithms for the MDFT. The al-

gorithms differ in the manner with which the DFT modules are

nested. In particular, a matrix Prime Factor algorithm (MPPA) and a

matrix Winograd Fourier Transform algorithm (HWFTA) are described in

section four. As in the one-dimensional case, the factorizatitfi of

the periodicity matrix constitutes an important step in the design

prouess.

One of the main disadvantages of the MDFT is the necessity to

keep track of all the indices explicitly. In the rectangular :T:

both the frequency and time indices are implicitly known if the

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

• . ... ...

ro-7O

%, ... . ° ii
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length of the DFT, in each dimension, is known. Zn section five, a

method is described which permits the description of the indices of a

general HDIT in rectangular form. This method will help in the de-

sign of efficient DVT modules.

A complete example is given in section four which clearly

illustrates the inner details of the MPFA. The example also serves

as an introduction to the next chapter, which addresses the practical

side of the dissertation.

The WV Algorithm 1301, 1311

Many F7? algorithms have been developed for the evaluation of

rectangular MDFTS. In this section, we derive a procedure which

permits the use of these algorithms for general MDFTs. As we

mentioned before, the procedure will have both practical and

theoretical usefulness. On the practical side it provides the

ability to use existing software and hardware facilities to implement

the program. Its main theoretical contribution is in showing how

MDFTs can be compared in terms of multiplicative complexity. The

approach results in a classification of MDFTs which has further

practical usefulness in the design of algorithms.

We start by considering a matrix-N Dl? as defined in Chapter

Is

X(k) xn) exp(-j2wk NC1nl
nCIn (19) .-. ,

N'

I 3

.:...... .. . . .. . . .. . .. . . .. . . ... *.%.:.. . .. . .

* .. - - -. L. .. .. .. . ... :.A



where x(.0 io the Input sequence, with finite support on Ld. We will

make clonr, shortly, that this definition unduly restrict* the values

that n and k can take. It will, perhaps* be of interest to let the

domain of n and k be as large as possible with the only restriction

being that the DFT values remain unchanged. Recall from the deriva-

t ion of (19) that x n) is periodically extended, at least

conceptually, to form a multidimensional periodic sequence, with

per iod N. N defines a lattice LN@ as explained in Chapter U1, and

the set of Indices nel N is then a set of representatives for the

residue classes LI/N Therefore, we can replace the set of nel
IN -N

with any set of representatives, with no effect on the final values

of the NDI! defined in (19). Similarly, the frequency indices k formL

a set of representatives for LT

. . . .. . .... In this iight, a better definition for a matrix-N DrT would be

X(k) - . x(n) e&xp-I2wkTN 1'n
ICLI (20)

kLT

in this formula there are no restrictions on the indices n and

k except that they must form sets of inequivalent elements with

respect to lattices and~ respectively.

Next, If K is nondiagonal, we have seen in Chapter 11 that we

can write it in Smith Normal form as

N VID V 121)

...................



where 0 Is an Integer diagonal matrix,

d2
d*J

where di divides di, I * .. ,-,and U and V are uninodular

matrices.

Substituting (21) Into (20) the KDFT simmation becomes

X (k) -x(n) expi-j2mkTV-'071 -1
ncL T (22) -

TC~L~

Let us define new integer variaoles:

n eln(23)

and

k-(V I)k (24)

We claim that the sets L)and Lki farm legitimate sets of

representatives for the residue classes L Moreover, since U(
1

and (V) aeunimodular, the sequence X(n) (x(ft)) is simply a

reindexing of the samples of x~n) (Xck)). The claim Is proved by the

intemediry o th folowin therem
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2beorem 91 tat A and B be noraingular integer matrices, and let the

*product A L-. denote the set of elements obtained by multiplying%

* *elements of L ~by A. Then the following equality of seta Is true:-

-L 1/AD(25)

Proof: We start by selecting a special set of representatives for

the residue classes. To do this, let us define R as the set of

rational vectors r all of whose coordinates r1 satisfy the condition

0 4 ri < 1, i ,..m Then, it can be proved [321, that the

set f integers b -uch that B31 b E R) torn a set of representatives for

Geometrically, this set consists of all the integer vectors

contained inside the rarallelopiped defined from the columns of B.

* N The equality (25) is proved by shc~winq set inclusion in both

ways. Let n be an element of A L i.e. there exists a vector

*bC L, such that n A b. Prom our above choice of

representatives, we have 1hat B71 b E R. But b *A7
1 ni thus

CI Cl e . This, in its turn, implies that n E LgB Therefore,

we have just proved that A~ Ly C Ly B ow let E T.- Be

th BA-i C. Re which is eqi:aet osyn that A-t C LIB

Defie anewvector b as b A no as n *A b. Sic btL

then n e AL y dfnto o h e AL Threor LyA

ALL. Combined with the f irst part of the proof, this proves that

the sets are equal.
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We now us* this theorem to prove the c.am we have made about

equations (23) and (24). Note that since n L ,

then n C Ue'LzA'_ But, applying the above theorem, U-1

I n addition, recalling that N - U D V. we have that _' N -

'f1 U D V - D V. Therefore, n c L/D_. We recall, from the pcesen-

tation of lattice theory in Chapter 11, that D and 0 V are bases for

the same lattice since V is unimodular. Thus L = I/D V and,

consequently, n e L

T TSimilarly, since D Is diagonal, D and thus C _ -

In view of the preceding discussion, equation (22) can be

written

* .~ (k) - x(n) exp-i D ni

!!CLIA(26)

k L

II.-..

*T.is sum is seen to be a matrix-D OFT. And, D being a dia- "

gonal matrix, we have obtained a rectangular DFT. This decomposition

provid.s the following algorithm for evaluating a matrix-N D T

- Express N in Smith Normal form as N U 0 0 V.

:" A- ?- :--...
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- Scramble LAO input sequence according to the

relation n*U 1n.

- Compute a rectangular OFT of the resulting sequence using

the diagonal periodicity matrix D.

- Unscramble the output sequence according to the

relation k aV-'k.

Several observations can be derived from this algorithm.t

First, the reindexings of the second and fourth steps involve no

multiplications. Therefore, the matrix-4 OFT and the aatrix-D DFT

possess the same multiplicative complexity. Second, the rectangular

Dl? will itself, in general, require data shuffling. The latter can

be combined with the shuffling present in steps 2 and 4, and,

therefore, It Is to be expected tLat the number of additions and data

shuffling for both DETs would be comparable.

As an example, consider the evaluation of an MD?? with

periodicity matrix N given by

~(2 4) (27)

Ariime that the input samples are available as a 2 by 4 rectangular

array and that the output samples are required to have the same



foreat. Thut the residue classes for both the input and output are

fixed and are given by

L -LT f(Ol,o) (110),(,)( 1 )g, (28)
(1,2)T (0,3)T (1,3)T}

and are shown in Figure 7. This choice was made for the purpose of

comparison between the MDFr and a 2 by 4 rectangular DFT.

The Smith Normal factorization of N is found to be

Thus, the UDV algorithm results in a 2 by 4 rectangular DFT. In

Fig-are 0, we sho the flowchart of the 2 by 4 rectangular DIT of the

Input samples x(n). The flowchart is derived by combining the flow-

charts of two-pin and four-point one-dimensional OUT's. it

represents a row-column decomposition of the signals. The rows are

2-points long and the columns 4-points long. For our purposes the

flowchart is decomposed in 3 parts. The first part consists of the

Input indexing, the second part contains the additions and multipli-

cations steps and the last step represents the output unscrambling.

AC Figure 9 Illustrates the matix-N DUT as evaluated by the U 0 V

algorithm. in that figure we have combined the indexings due to the

.. . . . . .. . . . . . . . . . . .
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n2

n,,

SL

Figure 7. Lattice and Representative Systemn for -2 81

......................................
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Figure B. Flowchart of the 2 by 4 Rectangular OFT
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Figure 9. Flowchart of the RYAlgorithm



- and V matrices with the input and output indexings of the matrix-D

IDT, respectively. A comparison with Figure 8 clearly shows that the

eTs differ only in the indexing parts. Thus the number of opera-

tions is the same for both DiTs.

This discussion lead to the important conclusion that the com-

putational complexity of the matrix-N D7 is completely determined by

the Smith Normal form of N. And thus, results in complexity theory

for rectangular DFTs 112) can be readily applied to matrix-DiTs in

general.

Recall from Chapter 11 that there are a finite number of in-

equivalent matrices D with a given determinant n. Equation (18)

gives that number as a function of the determinant whose value is

also the number of data samples. A procedure which provides all of

those inequivalent normal forms was also presented. Thus, given the

number of data points n, one has only to examine a finite set of

rectangular DiT's to have a complete characterization of the n-point

matrix-Drrs.

To illustrate this fact, consider. again the example provided

in section four of Chapter It. It was found that for a number of

data samples of 16, there are 3 inequivalent normal DTs with

periodicity matrices:

1 16~

2 -" 
(30)

D (4 0)

." . . . . . . . . . . . . . . . . . . . . . . . .

•Z 0 4-", "

. °
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Scorresponds to a 16-point one-dimensional DrT, R2 to a 2 by I

* rectangulas two-diaensional Df? and R3to a 4 by 4 rectangular two-

* dimensional OPT. Moreover, any 16-point two-dimensional matrix-M OFT

will decompose into one of these 3 09s.

It can be shown 1331 that the matrix- Fmybealtd

moire efficiently than the matirix-22 WT. At the same time, the

* ~~~latter Is more efficient than the matrix- DI. Tefothe

exists a total ordering of the Dr~s in terms of computational

complexity and this ordering can be deduced by looking at the class

of normal forms.

To prove the last point, consider, for the sake of simplicity

and vith no loss of generality, two two-dimensional normal forms,

with determinants:

0 d 12  
(311

0[d2 2 J (32)

Assume also that di1 < d21. Then since, the determinants are equal

d 11d d 12 421 d22 (32)

i S
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my the property of normal forms, we know that alIdivides d 12 and 2

divides d2 2 ' Thus, it Is easy to show that di 1 divides d21 , i.*.

there exists an Integer k such that

k 11 (33)
d -kd

12 22

tie substitute (333 into (3?) to get

R1 [0l kd

22 21

2 2 w k0 d (6
1

(36) and (34) lead to

[E2 0 1k d11
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The next step is to show that mati- oTs can be evaluated in a

more efficient manner than matrix-D1 Ds. We viii do no, in a Gsme-

what heuristic manner, by factoring P4 and.R2 as:

0- 1- 0

.. 
• °

38
r 1  0 1 0' 01

02 10 id L0 k "

The two matrices differ by their second factor. The factors, if used

in a algorithm such as the matrix Cooley-Tukey algorithm or in any

algorithm that will be developed in the nqxt sections, viii result in

O Ts with different computational complexity. It is known (331, that

a rectangular k by k 2-0 OFT is more efficient than a k 2-point 1-0

D0?. Therefore the matrix-2 OFT can be evaluated more efficiently

than the matrix-D1 OFT.

We summarize the above discussion by saying that the MDFTs can

be classified, in terms of computational complexity, both by length

and by form. The length refers to the number of data samples and the

form corresponds to the shape of the Smith Normal form. For a given

length, there are a known finite number of forms and these can be

totally ordered according to computational efficiency. The ordering ",

Ia accomplished by examining the invariant factors. More

specifically, it is done by looking at the first non-equal Invariant

factors, starting from the top rows of the matrices. The form cor-

..*.1-



responding to the largest Invariant factor result in a more efficient

algorithm, as explained In the previous example. An Intuitive

explanation is that this form is somewhat more balanced.

Cuinese Remainder Theorem for Lattice*

In this section ye state and prove a purely mathematical re-

suit which will be used in subsequent sections. The Chinese

Remainder theorem for integers (CRT) played a critical part in the

development of one-dimensional ?FT algoritams. When the modulus n of

a congruence is composite, this theorem helps reduce a congruenc3

modulo n to a system of smaller congruences (namely, congruences with

respect t-. the factors of nM. We begin by stating, without proof,

the theorem in its simplest form.

Theorem (Chinese Remainder theoe. for integers) 122)t Assume that

RN 132 where H, and Y2 are Positive integers and assume, in addition,7

that (N1,N2) a 1. Let p and q be any integers and consider the

system of congruences

n Ep (mod N1)(m

n Eq (mod N2

Then this system always has solutions and any two solutions dif fer by

a multiple of N.

To illustrate the use of this theorem for DITs consider a l-D

bIT of length N. The theorem may be Interpreted to imply that there

.~~ ~ ~ . ..............
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is a one-to-one relationship between the set of sample indices n,

defined modulo No and the pair of Indices (psq) defined modulo N, and

V2 rseivl. it is this reindexincg of the sequences into higher

dimensions that is at the core of the savings of various M~ aI-

gor ithas.

The theorem is capable of vast generalizat ions. Properly

formulated, it holds in any ring with identity. The most general

form we have encountered in our literature search, occurs in commu-

tative modules (vector spaces over rings). Unfortunately, our

interest lies with a noncofzutative module, namely the lattice of

integers. There are no generalization of the CRT for noncomutative

modules, most probably because each one would constitute a fairly

particular case.

We wish to formulate and prove a similar theorem from a

lattice point of view. We begin by peesenting a useful Ie=a con-

cerning factorization of matrices. Assume N is a composite matrix

whose determinant is the product of two relatively prime numbers p

and q.

Kern:s There exists matr ices Y. 1a 12 and Q2such that

! !ik,- 224 ~ 140)

and

Wdet P1 I Idet P I -P

z-2..

Idet . .e .2 q
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Proof aUsoing the results frVon sectiton four, Write N in Sm ith Utojmal

form,

D is diagonal and Idet DI -pq. It is fairly straightforward to show

that D can be factored as

DD- (42)

where and are both diagonal and I det R1 I p, Idet - q. We --

insert (42) into (413 to obtain

N 9 D D V (3

And, sin'ne R, P2 a 2 D1 (43) can also be written as

N U~ D D! (44)

The lemsa is then verified by putting

12  
RR (45)

-2 2

le.
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Notice that the preceding proof is a cosatructive one.

Moreover, It to possible tc writv a program that performs the Z

factorizations, if (45) Is used. Note also thab: the factorization is

unique only up to unimodular matrices, for

is another acceptable factorizatica, for any unimodular matrix 3.

Now, given the factorization (40), let L1 , Lg~ be

the residue classes as defined in Chapter 11. The direct sum of the

2 soe, L *P L/2, is def ined to be the set of couples (p. _S

with 2 e LIp and . L n this set, addition of vector and

multiplicrtion of a vector by a matrix A are defined by

IA(pj (A p,A q) (46)

theorem 11 (Chinese Remainder thaeorem for lattices): L 1/M is iso-

morphic to the direct sum L *

* ,.Proofs: The proof consists of providing a map F from L to the

direct am# which is, first, a group homophism, and second,
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one-to-one and o.-... L.t us define F as follows:

Fn) - , (47)

where

p E -n (mod -±

a an (mod _2 )

It is straightforward to check that if F(na) - (2, ) and F(2) .

(P2, _2) then F(n1j 2 ) - ( 2, j4  ). Also, we have P(A n_) -

(Ap, A . Thus, P setisfies the requirements to be a group homo-

morphism.

The proof of the one-to-one property is much more involved and

requires some of the theorems presented in Chapter I1. To be more

specific, we need to show, since the spaces are linear, that

P(n) - (0, 0) if and only if n- 0. Stated in another way, the fol-

lowing must be true: n E Lt_ if and only if n C L and n CQ

Translated in set ,otation, it must be true that Lm WL4 nLQ.

Notice that in (40), N is written as a right multiple of both

and Then, theorem 2 In Chapter 11 implies that N is a sub-

lattice of both L and LQ In other words, L _ is contained in

LQ

Let LD denote the greatest common sublattice of Lp1 and L-2

- Lp n L- In the previous paragraphs, we have shown thati.e., LI)'1

LN C Lb. Theorem 3, in Chapter 11, implies that D is the lcrm of

and Q2. Then, since N is a right multip~e of P1 and Q2 and by

...2,.



definitinn of the lcrm, N in a tight multiple of D. Therefore, there

exists a matrix S such tha N D S. Then, by the property of

determinants,

Idet NI > Idet DI (48)

On the other hand, Idet DI is the 1cm of I det I1 and Idot

Q21. But 1dotj u p, Idet Q a q and p and q are relatively

prime. This clearly implies

Idet D I =pq =n

Thus

Idetl D IdetH NI (49)

(49) combined with the fact that LNC L., implies that LN a L0. which

proves the one-to-one property.

Now, let's examine the onto property of the map P. In our

case this property is automatic. Indeed, the equality and finiteness

ot the number of elements in our two sets, combined with the one-to-

one property, imply the onto property.

We take the transpose of N in (40) to obtain

T TT T T 0
N -Q P1 121P(0
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T

Applying the Chinese Remainder theorem to NT yields a formula

that will be equally useful in subsequent sections.

,L +L
T1 T T (1

As an application of the CRT theorem to the MDFT, we briefly

state that the signal domain index n can be mapped into a pair of

indices (n, n2) without altering the values the MD)T takes.

Similarly, the frequency index k is also mapped into a pair of

indices, (k, k2 ). These transformations form the basis of the tech-

niques that will be developed for the efficient evaluation of MDFTs.

As in the 1-D case, the mapping F is not unique. Choosing the

right indexing scheme, i.e. selectiig F, will become a significant

part of the construction of a fast algorithm. Rurrus (341 was able

to derive the general form of the mapFings F, in the I-D case.

Prime Factor Algorithm

This section addresses the central problem of developing

practical, fast and efficient algorithms for the evaluation of

MDFTs. We describe, here, a method which is a generalization of the

1-D Prime Factor algorithm (PFA) (9). The idea behind the technique

is the same as for its 1-D counterpart: compute long transforms by

combining a set of short length trarsforms. The Cooley-Tukey al-

gorithm uses the same principle, but now the lengths of the short

DFTs are required to be mutually prime. The primeness condition,

together with the results discussed in previous sections, allcws the

establishment of new algorithms.

i."

• . .. . .. °- -. o, .. .......................... ...........-. ".
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A detailed description of the algorithm is given next. The

description involves two factors only, for clarity, but the technique
can be straightforwardly generalized to include more than two

factors. The algorithm will be called the Matrix Prime Factor al-

gor ithm (MPPA).

Consider an MDFT with periodicity matrix N:

X(k) - . x(n) exp-j2wkTN-l n)
- nCL I (52)

T
- I X/N

Assume that the length of the MDFT, Idet NI , is the product of 2

relatively prime integers, p and q. p and q represent the lengths of

the short DFTs which are going to be combined. Multidimensional

index maps will be used to convert couples of indices into the

irdices used to access the input and output data arrays.

As we mentioned in the previous section, N can be factored as

with

Idet P I - Idet PI -p

Idet Q1 - Idet Q21 -q

The Chinese Remainder theorem we have just described asserts tha L,/,

is isomorphic to the direct sume L + Lyj . A crucial step in

. . .. . . . . . . . ..

.. .-.
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the design is how to sele,.t the isomorphism. The Isomorphic map has

to be a one-to-one and onto correspondence between the collection of

indices 1 , wheren 1 belongs to Ll1,j and n2 to LI/ 2  and the

index n in L D enoting the map '(n 1 , !2 ) . any summation over the

simple index n is replaced by a multiple sum over the variables

if n is replaced everywhere by Fin 1, !12
). We may, then, define a

new multidimensional array by

Y(-' - x(F(n-1 A2 )) (53)

and y is substituted for x whe.n the simple summation is replaced by a

multiple sum. But, it is often convenient to substitute the letter x

for y and no confusion should result since x and y have different

arguments.

Similarly, a second map should be produced for the output

indices. It is a one-to-one correspondence between the collection of

indices (k1 , *3) whr k belongs to Lp - and k2to L1/T and =

the index k in LI/ T . Denoting the map as G(!I, !2), the output X(k)

is recovered from the multidimensional output array X(k, ) by

mapping backwards through the map G. The exact equivalence is

X(k) -x(C - _ ,! (54)

Due to the particular forms of the maps F and G and their

interactions with the indices, the kernel of the resulting multiple

summation will be separable, yielding a great savings in computa-

, .. . ,.[:;.'

eW*
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tional effort. The success of the KMWA method stems from this

separability.

In this seCtion, the maps P and G are chosen to be different,

for demonstration purposes. In the next chapter, in our actual im-

plementation of th. algorithm, practical considerations lead us to

select identical maps for P and G.

Let us select the map,. n- n V n1, l~ to be:

where U is the unimodular matrix derived when writing N in Smith

Normal form as N a U D V.

We need to prove the one-to-one property of the map. Because%

Qand E1 have relatively prime determinants, ye nay assume# with no-

loss of generality, that (vd.2* We want to show that if n

satisfies both

.n E2 QU'a (mod N) (56)

and

- 222's (mod N) (S7)

whet*e and !4 belong to I- then it must be true that fh E

(mod P) Combining (56) and (57) yields

* . .... ... ... ... *..* ~*. ..... <L3

A~5A~eqTh10
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(mod N)

which translates into

-2! i+ N r

for some integer vector r. We multiply both sides of the equality by

U 2 we have

+ It U!.2 -N r (58)

Due to the fact that N Q Q.P, we see that

* , Finally, from the relation

(recall thath k kD and~ ?2 R2 we obtain

which, since V r is an integer vector, is equivalent to
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-1 a, !md (60)

(601 proves the one-to-one property of the map F.

As wehave already mentioned, the onto property is implied to

by the one-to-one property and the finiteness of the sets. Thus, P

is a legitimate isomorphim map.

The output map G is slightly more complica.ted but the same

method is used to show that it satisifies the necessary re-

quirements. It is given by

.(WAA N T (61)

where end, 2 are integer matrices satisfying

(mod ~T)(62)

P 4 E2 12 (Mod 2,T)

and

- ~T 3 (63)

"2 12 !2

*where and ace sone integer matrices. (63), essentially, states

that is a right multiple of a ihtmlil of T.

j an 2 riht mltile o PL



bso

Me substitute (SS) and (61) into the exponent of the MDPT (52)

to get

kTN-1 ? L,'-1 -t.f' -1

whaich,* when expanded, becomes

k N nu (Aj iT-_2 .Sj n1  tITi p It U-2 (64)

%!2T-1'I -t % T-Al -1 A

L

We examine now each term in the right-hand side of identity (64).

Noting that N -21 the first term yields

* - 1T -1 -1 -1

and. since _ I2 the identity matrix, then

Using (62), w get

T I1-
(Ak T-1-1 ~ .1!~2 .1 (mod !)(65)

.. . . .. . . . . . . . . . .



The second term of (64) Is c~naidered next. We substitute bfor N

to obtain

hence,

:-1 - -1 T -1 q -n1

which, by the transpose property, becomes

T -1 -1 T T -1 -1

with the aid of (63). (66) can be expressed -as

T -1 -1 T T -1 -1

hence

TN-I -I TT -1

Notice that the right-hand side of identity (67) is an integer

number since U 1is unimodular, thus

LA -1 T 2
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and

T -1*xpl-j21r(&k N 12 (681

Following the same process# we find that the remaining terms

in (4) can be expressed as

R~ '!22.a, 0 (mod I) (9

and

T-1 -1 T -1 -1~ !,~ f2 -~2 2 ~ flZ(703

Next, we substitute (653, (6e), (693 and (70) into (64). 7hen

the KDFI (523 can be expressed as

ep-2T -1 -1

*~~X A 1 ~ 1  2 ) ep- 2 1 !2 all1
nCL 1 , n ~CLy (713

T T -1 -19 L *exp(-j2wk .

-22

We define new matrices, P and Q as follows

!;;:. Z



83

1 U

Because of (59), P and Q also satisfys

- 1 (73) -

Then (72) and (73) imply:

L aL

L aL

L T T

L tT T

* - Continuing, w can write (71) as

ex[jwT E-1
x . 1 ~ 1 !2) Xz[j2k (EL S2 (75)

* .... nCL11 n El2 LJ

I/ :*-
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expl-J2vt 2
k C L T

-t

k L T
-/1

Finally, to evaluate (75), let us express it in two pacts

T -1X (, !2)xQ 1 m 1 ~2 exp[-j2!k 1 2 . A2 (76)
n CL

The summation in (76) represents a collection of MDF~s vith

peariodicity matrix j.A different .matrix-Q DII must be evaluated on

the array x~n1, n2) for each value of the vector This means that

the~ number of matrix-Q OM~ is p. The summation indicated in (77) is

another collection of MDFTs, on the array C n1 , F) or each value

of the index k ,' a matrix-P DIT is eva~uated. Therefore, equation

(77) representes q matrix-P DrTa. Thus, vs have redce~d the matrix-N

DII into a set of smaller length MDFTU. By comparison with the

mtrix Cooley-Tukey algorithm, we notice, as in the I-D case, that

there are no twiddle factor multiplications. This technique can be

extended, in a straightforward manner, to include more than two

factor.



Onie iwportant observat ion to be made is that N, P and Q l'ave

the same unimodular matriceb in their normal decomposition. Indeed,

14 UD D V

PmUD V(78)

The importance stems from the fact that U dnd V are involved in input

and output reindexing, respectively. Thus, the matrix-P OPTs 3nd the

matrix-Q Dirs may share n.ose parts of the aiqorithm that are related

to U and V.

If N sadiagonal matrix, then U and V become identity

matrices, and the MDFT reduces to a conventional rectangular DFT.

The ::Al procedure is significantly simplified and the result re-

smesthe comp-'ex techn~ques developed by Nussbaumer [4) using

polnomaltransforms. Thus, those algorithms can be derived as

special cases of our general algorithm.

He deduce, next, the number of multiplications, M, and

additions, A, which result from computing the matrix-N 01? by the

MPFA. let M, and A, (K2 and A2) be the number of multiplications and

additions, respectively, required to calculate the matrix-P DFT

(matrix-Q DPT). Then, clearly,

K q N1 + PH (79)

A *qA 1 + pA2 (O
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Note that (79) represents an upper bound only, since some of

the multiplications may be trivial operations (multiplications by

unit eleme.ts).

In the next section we will give a detailed description of a

simple example to illustrate all the characteristics of the KPFA

technique.

It is important to emphasize that the MPFA constitutes only

one way, among others, for implementing equation (75). It is a

row-column type of computation, where the concepts of 'row' and

*column' are expanded to have meaning in the case of multidimensional

data. Flor the multidimensional data array x(n 1 , p2) a column

consists of the data taken by holding the first data index fixed

and letting n, take all its possible values.. A row is obtained by

fixing p2 and varying n i. We will describe in the last section of

this chapter a method for organizing the data array into rows and

columns, where this time the terms 'row' and 'column' do have the

traditional meaning.

Thus equation (75) must not be viewed as the end product of an

algorithm design process, 5ut rather as the branching point for

possibly many F" algorithms. In addition to the PFA another highly

efficient algorithm for the evaluation of rectangular DPTs is tt.

Winograd Pburier Transform algorithm (WFTA) (31. It is based on a

nesting algorithm proposed by Winograd 1101. In this approach, all

the multiplications steps of the short DFTI are combined (nested)

into one multiplication step. The WVTA displays superior mul':iply-

add characteristics which, often, make it preferable to the WFA.

~........ -- -. .-.-..... . ..................................-.............. . ........ .......... ,.. ,-,



Among its disadvantages, we cite its slightly higher number of

additions, and its higher memory requirement. Johnson and Burrus

1351, have recently shown that the PIPA and the VITA belong to a much

larger class of DI! algorithms. This general class can be generated

by systematically nesting the short OFT modules in all possible

manners.

We will conclude this section by showing how nesting can beL

applied to evaluate the NDFT (75). The derivation given here,

parallels essentially tt~e one given by Nussbawner 141 for rectangular

D FTs.L

Let X (pj) be an indexed column vector with p elements,

nX (

X n X(Dl
4 D A2

for each in2 inQL and let A be a p by p matrix of the complex Vx-

ponentials expl-j2IkIlPIa,] where the rows are indexed according to

kand the columns according toni Then, (75) can be expressed as

-T -1

Equation (91) represents a matrix-Q DLT where each multiplication by

exp(-j2 T -In I is replaced by a multiplication by

ex !i-2  a .22A. But, due to the particularfomfAtieltr

is in reality a matrix-P OUT where each multiplication by

' I



ep-2x E11 is replaced by a multiplication by

eV-~kT -t pf-2k rnlj Thus, since the matrjx-Q OFT

ir*jt- .es N2  multiplications' there are M2  such matrix-P DFTs.

1Iherstfore, the total number of multiplications N is

1 IM2 (82)

where MI is the number of multiplications for a matrix-P OFT. The

total number of additions, on the other hand, is equal to

A N 2 A1  4p A2  (83)L

where Aand A,2 are the number of additions for matrix-P and matrix-Q

OFTs, respectively.

It has been shown (41, that, in comparison with the PFA, the

WFTA reduces the number of multiplications by as much as a factor 2 -

for some lengths, while reqiring a slightly larger number of

additions. Since equations (82) and (83) are valid. whether the DOT

Is rectangular or not, the comparison still hold in the general case.

Hybrid algorithms that combine the structures of the PTA and

the WFTA can also be extended, in a equivalent manner, to the NOT

case.

An Rzomple of the KWA Aiqorithms: The Hexagonal PWA

The NWFA technique Is, perhaps, best understood through the

examination of an example. After the rectangular OFT, the next most

Important class of DPTs is the hexagonal OFT 119). A 2-D OTT that



N - - - -. - - 9

relates a hexagonal ly-saupled signal to hexagonal samples of its

Fourier transform has a periodicity matrix

[(2N N1  (84)

The Smith Normal decomposition of N is

We let p'-3 and q-.N2; if (3.N) n 1, then (p, q) -1. Then a factori-

zation of N as in (40) is possible, with

t0 3N 0 1 0 -31



1 02 j tj Nj 02 (86)

in Figure 10 we show the region$ "Iu and L, for the case

of N-2. The residue classes ace represented here by the integers

inside the parallelograms formed from the columns of the respective

matrices. This representation has been selected because we are

familiar with it, although, perhaps, it is not the best cepresen-

tation possible. In fact, -te will provide in the next chapter a much

better representation which significantly facilitates the indexing

and reindexing steps of the algorithm. For now, we thus have

LTT T T T T

(2 1)? (3 2) T (4 3) T (1 2)? (2 3) T(3 4)T (87)

* 10 QT,(I O)T (2o)TI88

I. - 1(0 -0)? (1 0)?T (2 1) T (3, 1) Ti (89)

The next step is to compute the mapping represented by (55)

between the elements of L and the elements of the direct sum Lp

*L/,. The correspondence between the indices n and the indices

tni, a2) is fotvnd to bet



n 2

n2

1c)

Figure 10. Regions (a) LI/N , (b) LI/a1I (C) 11/02
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Figure 11. Partial Flowchart of the MPFA Algorithm
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a 0) T  C ((0 0)? T (0 0) T)

(I IT < > ( 0) T(3)T

(2 2)? T - ((2 0) T. (0 0)?T)

(3 3)? T - ((1 0)?T. (3 I)T)

(4 4)?T ((1 0)?T (0 )J

(S 5)T ((00) T (0 I)T

(2 (31)

(32) iT ((1 0)? T (2 1 )T) (0

(43)?T ((2 0) T, (2 I)T)

(1 2 ) T > ((0 0)?T ( 1 0) T)

(23)? - ((1 0)?T, (2 1)T)

(3 4)?T < -> ((2 0)? (o1 0)?T)

Next, the output mapping (61) must be performed. Note that since N

is symmetric, L~/I T L1 . -

Once the mappings ace found, a partial flowchart for the al-

goriths can be drawn, which is done in Figure 11. Each matrix-Q1 OFT

operates on a subset of the input array, indexed by j. The results

are fed to the matrix-P1 DFTs. The matrix-Q1 OFT is a four-point OFT

*and the matrix-fj OFT is a 3-point OFT. The flowchart of these

matrix-OUTs is given in Figure 12.

This example illustrates fairly well the form of an MPFA pro-

grem. One part of the program should be concerned with the input

-'indexing. Another part should realize the output indexing. There

should also be a list of subprograms each of which co~rrespond to a

short-length OFT. Large computation savings can be made if those

A9
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short DFTs are opti'aized with respect to the number of multipli-

cations. The UDV algorithm should be used to compute those short

DiT. Rectangular short DFTs are then obtained which can be evaluted

in a simple way by the row-column method. A more complicated

approach, but one which results in greater savings, would be to use

the faster vector-radix algorithm or even the very fast (N by N) DFTs

developed by Winograd [331, for N prime. More will be said about
L

this in the next chapter.

Rectangularization of the Indices:

In the evaluation of matrix DFT, one must keep track of both

the time and frequency indices. An advantage of this is the

elimination of the problem of the ordering of the output data

array. The address of the output sample is automatically known and

is given by the frequency index array. Rowver some memory space

must be reserved for that array and that amount of space may quickly

become quite prohibitive for large MDlTs.

In the rectangular case, the programming task is greatly

facilitated by the implicit nature of the indices. Simple nested

'do" loops (in Fortran) can generate all the indices if the lengths

of the DIF in each dimension are known. On the other hand, the

explicit nature of the indices in the general MDFT make the

programing task more difficult.

To alleviate these problems, a procedure will be developed

which permits the representation of indices in a rectangular form

even for nonrectangular DIrs. Without loss of generality, let's

consider a 2-0 matrix N DIT. Write N in terms of columns

I2.•

~~t-io.



Then, we apply theorem 4 in Chapter 11 which states that there are

integer vectoesF and.! and integers gii' g21 1 922 such that

N (92)
!2 = 12i1 l 922 E2

Moreover the set of vectors

U, (93)

U2  0" .. 2-

constitute a representative system forL

Observe that if we kno~ ,g~ n then we will be

able to generate, quite simply, all the indices by varying u1 and u.

In (93).* This process resembles the process of generating the

indices in the rectangular case. For that reason we call it the

rectangular ization process.

The same process may be applied to the matrix VT to generate

the frequency indices. That is, we can find integer vectors Y-10 12
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and integers I, and 122 f rom the columns of wT such that the get of

vectors

V,- 0 1 .. t~~ (94)

2 2

- - generate the output indices.

We substitute (93) and 94) into the t4DFT equation to get:

g1 1-1 22-

U.0 u 0 US)

1 2 (92

Uquation (95) illustratee clearly the relationship between nonrectan-

P gular Me~ and rectangular Drls. rt shows that while the rectangular

Vir is a special case of the HDI?, the KDI? can be considered to bea

special case of the rectangular DFT. This seemingly paradoxal state-

sent can be understood by noting that the different representations

are mainly convenient choices for organizing the numbers that repre-

.

..
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sent data. To seit more clearly, assume that 92 , 122 -10 tL*"In

the variable u2 and '2 vanish and (95) becomes

X(v1  = X(u) expI-j2W(Y 1 4-x)v1 (96)

T ~
the term y, M! x will reduce to t/Idet NI, where t is some integer

which satisfy (t, Idot N)I 1 1. Moreover, 9 -l, Idet NI.

Thus, we have

Idet N 1-1

* xu) xp- 2W
I ~uI xp-jIdet NI t u Iv 11 (97)

U10

(97) represens a 1-D OFT where the output index vi is permuted by

the integer t. Thus the 14DFT has become a permuted 1-D OFT.

We conclude this section by noting that by writing the MOFT as

in (95), we reintroduce the problem of non-ordering of the output

samples. Indeed, the output resulting from (95) will not be in the

same order as the input, and c.,nsequently, an additional unscrambling

step Is necessary.

* Kuatena ions to the Hatr iz-Cooley-Yukey Algorithms

We have already mentioned in Chapter 1, the Matrix-Cooley-

Tukey algorith, developed by Mersereau and Speake 120). Like the

MPFA,. it combines short length OFM to compute long OPTs. However,

::1 1
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it does not require the lengths of the short Ts to be relatively

prime to each other. Thus, a useful application of the algorithm is

for MOFTs which have for their length a power of a prime. The MPFA

Ihas a simpler structure and does not contain twiddle factors. For

these reasons, the matrix-Cooley-Tukey algorithm is, in general, less

* efficient than the MPFA, but it offers a much better variety of

possible lengths.

* Recall that the input indexing present in the matitx-Cool~y-

Tukey algorithm is realized by the mapping

where n C LINand £and jbelong to the sets Ip and IQ re-

spectively. IP and I Q are described in [211 in terms of cosets and

imatrix-sampling of sets,. This description, while valid, does r.ot

allow for easy implementation. Except for some special cases, such

as the rectangular and the hexagonal cases, It is rather difficult to

construct the Bets IP, and I in a systematic fashion. Our goal in

this section is to use our knowledge gained from the MPFA to present,

hopefully, bettor alternatives.

Instead of IP and 1. as defined above, let us select L1 1 ., and

LyQ i.e., let E L,/ and I L1,Q. We must show that the mapping

(983 works, that is, it MUSL be one-to-one.

*Assume that n satisfies bot



where .p. and p2 belong to 1 anda andq to L 1 /Q. Then

R I - 2  P-2 +
1

for some integer vector r. then

P1 P2 + -(.%2 + N r 100)

We substitute N - P Q in (100) to get

p 2 + P -2-zl + r) (101) =

(101) is equivalent to

. 2 (mod P) (102)

that is is equal to p2 in L W/p. We use (102) in (99) to get

12 P Q(103)

We multiply both sides of (113) by P-1, then

Q .r (104



thus 3. and 12are equal in L-Q (101) and (104) together show the

one-to-one property of (98).

If we look at the examples given in 1211, we find that indeed

the sets selected satisfy our construction. This construction could

be implemented in a fairly systematic vay by the rectangular izat ion

process developed &n the previous section. Another implementation is

to use the Smith Normal decomposition of the matrices U, P and Q.

L
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CHAPTER IV

M in IN4 PLE TATIONS

In the present chapter, we attempt to cover the practical side

of the thesis. The object of atention will be a set of computer

subroutines that solve the MDFT. Specifically, in the first section

we apply the techniques developed in Chapter III to construct an M4PFA

procedure. A detailed discussion of the algorithm reveals the

existence of a computationally elaborate step in the process. This

step, represented by equation (55), corresponds to the determination

of the input samples to the short DFTs. The difficulty resides

mostly in the (mod N) operation but it is also the result of the

various matrix multiplications present in (5S). The (mod N)

operation is essentially a multidimensional vectorial operation, and,

as such, is highly dependent upon the selected set of vectors LV,.

From a detailed examination of the problem# we will be able to pro-

vide a satisfactory solution to it. The critical part of the

solution will consist in selecting the Oright" set of residues Li/N.

In section two we carry out a comprehensive evaluation of the

MPFA subroutine. The algorithm is tested for a wide variety of

" . allowed lengths and also for a variety of forms. It is compared to

two other algorithms. Since an FFT must be fast, the principle com-

parison of the various algorithms will be according to computational

speed.

... ....- -
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The KPA is a general purpose FFT algorithm. The generality

is with respect to two aspects: first, it involves variable lengths,

and second it accommodates variable forms, as was already mentioned

in the previous chapter. Because of this complete dual generality, a

lo3s of efficiency is present due to the necessity of tradeoffs. If

we drop the requirement to include all forms, then we can reasonably

expect to improve on the efficiency on the program. This is indeed

the case with the rectanqular MPFA. In section three we will show

how to design an MPFA with a -ion-rectangular specific form. In --

particular, we will describe a mixed-length hexagonal Prime Factor

Algorithm (HPFA).

The modules in the MPFA are evaluated according to the U D V

technique. Moreover, the resulting matrix-D DFI is computed with the

simple row-column method. As mentioned before, an alternative

approach is to use a nesting method. If, for .instance, Winograd's

nesting is used then we would have, to stay consistent with our no-

tation, a Matrix Winograd Fourier Transform Algorithm (MWFTh).

Nesting improves the computational load of the algorithm, but it also

complicates its control structure.

Neither the row-column nor the nesting approaches are the

fastest known algorithms for evaluating matrix-D DFrs. For instance,

Ausslander, Feiq and Winograd have recently proposed a very efficient

method for evaluating rectangular p by p DITs (where p is a prime

number). In section four we describe an algorithm which will allow

us to include new algorithms as they become available. The approach

takes advantage of the modular nature of the MDFT. A related problem

. . .7,4
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is that of selecting the most appropriate matrix-N which can be used

to compute the DIPT of a given finite extent multidimensional se-

quence. The answer is dependent upon not only the shape of the

sequence but also upon the FF1 algorithm at hand. We will validate

the answer by considering a simple example and using the MPWA.

As we have already mentioned in the introduction, we are

voluntarily limiting our-ewes to the two-dimensional case for the

purpose of clarity and ease of presentation. Nevertheless, every

concept and technique that will presented applies equally well to the

case of more than two dimensions. For instance, starting from a

two-dimensional MPFA algorithm, it is straightforward to construct a

three-dimensional MPFA algorithm.

The MlA Algorithm

In this section we propose a Fortran 5 implementation of the

MPFA algorithm discussed in the previous chapter. A global flowchart

of the program is shown in Figure 13. The input to the subroutine

consists of the data input array organized in a Osatisfactory"

manner. We will see shortly that this data organization is of utmost

importance to the reindexing problem. Next, the factors, correspond-

ing to the prime factorization 2f the periodicity matrix, are ordered

according to length and form. Corresponding to each factor in turn,

a set of indices required for each short-length DPI is calculated

using the input mapping equation (55). Then, the data given by these

indices is transformed by a DIT module of proper length and proper

form. The results of this transform are replaced in the data

vector. If more of the same factors are required, then the new

......... ......- - - - .-.-.
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Figure 13. Flowchart of the MPFA Algorithm
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indices are calculated. Otherwise, the program moves on to the next

factor. The program terminates when all the factors have been used. i"

Observe that the flowchart doesn't include the output reindex-

Ig step corresponding to the output map (61). One reason is that

solving (61) -(63) for the matrices A* and 8' is not a trivial

task. The main reason, however, is that the map (61) produces an

incorrectly ordered output. Consequently, the output sequence must L

be rearranged to get the DET in proper order. This is analogous to

the reversed-bit nature of the output of the one-dimensional radix-2

FFT.

To better explain the concept of in-order calculation, assume

the complex input data is given in arrays X atd Y (real and imaginary

parts, respectively). The program calculates the matrix- DFT in

place, &.e. the output is written over the input in X and Y. The

in-place requirement is necessary when memory space is limited.

After the in-place calculations are made, the locations of the output

MD?? values are given by the input map (55) but the frequency index

is given by the output map (61). Thus, it is necessary to permute

the output if we wish to have it in proper order. One benefit of

having a correctly ordered output is that it is no longer necessary

to keep in memory the addresses of the output since they are identi-

cal to that of the input.

Zn the one-dimensional case, Burrus and Eschenbacher (361 have

recently proposed a new implementation of the PFA which allows the

transform to be performed in-place and in-order without output un-

scrambling. The solution consists of using identical maps for the

'IIN



input and output indexing. However, their approach is applicable

only to fixed size transforms since the structure of each short 037

becomes dependent on the size of the full transform. Thus, the pro-

gram must reorder the output of each module and the reordering varies

according to the transform size. Rothweiller (371 solved this

problem by using distinct pointers for the input and output data for

each OFT module. Our goal is to extend these techniques to the KDV?

case.

Consider again, the two-factor matrix-N OFT of Chapter III:

X(k) = . x~r.)expl-j211 k TNI n
.EEL

kcL T

This time we use the following input and output maps:

22u Unal+ 1 U 2  (mod N)

k T -T T -T Tk + j1 i!~!~ (mod N

If we develop the various matrices into their Smith normal forms, we

get

.. . ......................................

.........................



.2 22 U1  ~ (baodN) (106)

k V? 2 ( ) k1  -1 ( T2 (Mod NT) (107)

Observe that (106) and (107) have the same form, except for the input

and output matrices U and V. Next. we substitute (106) and (107)

into (105), and after a number of simplifications we obtain

-1 -2-T T -1 -1

X (k1 ,.2) u) ,x(n,,a 2 )exp[-j2w(D2 !L,)R, ll
n n -1 -1 , (108)

k11 T -1C T1

I/VM

Let's look more closely at the inner summation: it is a set of

mattix-D1, DFTs of the form

JL
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C( x (n 2 )oxp(-j 2 v(D 1 !k) U1-

-2

As in section two of Chapter 111, we lot

- -1
-2- -2

z-2 ~ -±/t)

C(.2l ~ k x -V, )epIi (R 19"2 ~-22 12 -242

n ~ ~ 2 cL

DL od 2is simply a permutation of the vector k *Thu*wle

-2 (2..~.2) (mod (10

Then,

L

.5... ... a



• - - (~11 0)"'- '
Cta.l X X(a, # 2 )expt-12w i2 '2 2

-2 eL D2

It is seen that the short OPT (111) is a conventional rectangular

matrix-22 DFT. This module normally produces outputs ordered accord-

ing to I2, so these outputs must aoe reordered according to t2 for the
2 -

in-order-transform. This reordering uses D1 and thus the matrix-2.

module is not independent of the other factors. As mentioned above,

Rothweiller suggested the use of distinct pointers for the input and

output data of each Dr module. In our program, array JR contains

the addresses for the output data in the permuted order required by

(110). Arrays NUMI and NUN2 are used to reorder the outpet data

addresses (NUMI corresponds to the first dimension and NUM2 to the

second dimension). The DO 215 and DO 216 loops compute the proper

permutaticn maps for each factor of the transform. The Fortran MOD

function is used to realize equation (110). The short DFT modules

are thus independent of each other and use array IN %s the input data

pointer and JR as the output data pointer.

The sequence of inputs to the short DOTs is calculated from

the index map (106). In the one-dimensional case (106) reduces to

n -Dn + Dun (mod N) (112)
21 1-2

"oO , .o 2 1 -



whete N -D 1D2 and n~O1..D-,n 2-0,1,., 2 1 The (mod N)

operation can be implemented very simply and efficiently in the fol-

lowing way 1361.

DO 20 n 2 a 1, D2

DO0 30 n1 I 2, 1

!N(n) IN(n - 1) +

30 IF(!N(n ).GT.N) IN(n1  - 12(n) - N

20 IN(1) =IN(1) +*

It is seen that (112) is implemented with two addx,.ions, one condi-
Pb0

tioned substraction and one cotiparison statement. The (mod N)

operations contains one conditioned substraction and one comparison

instruction (IF statement) . The multidimensional (mod N) operation,

unfortunately, doesn't lend itself to such a relatively simple imple-

mentation. To better grasp the nature of this problem, let us

consider an example. Assume that the addresses of the input data are

given by the vectors contained inside the parallelopiped formed from

the columns of.N, as in Figure 10. In this example

4 2
N - . . .. . . .. . .

41



We find that the Smith normal factorization of N is

I~t I. 1 i

1 0

S,. to, 0

Thus, we have

L 1 (0 0)T, (0 1)T, (0 2 )TI

11

NextI) asud that-1 (I , Equation (106)

pyields

Tn* (5 2) (mod N) 11131

Prom Figure 10 we then deduce that the solution to (113) is

-.
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~m(3 4)?

TThis deduction Is based on the fact (S 2)? and (3 4)? occupy

identical relative positions inside their respective parallelo-

I pipedes. Numerically, this operation translates into

1 2(5 2)T ( 4)? + #1( -1)'

I or equivalently

I~ (11)? J( 2)? -3 4)*1 14

In general terms, equation (114) maybe coded in the following way

For each mi C L

compute N (n-rn)

17 I results is an integer than nirn (mod!N)

Potherwise, loop

It is clear that this procedure is highly time consuming. It

contains a vectorial mubstraction, a matrix multiplication and a
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vectorial comparison. It may be improved by transforming the multi-

plication step into a sequence of additions since all variables ace

U integers. This technique was used and then abandonned after observ-

ing the execution times of the program. It was found that

approximately 75 percent of the total time was spent on indexing.

ft Comparatively, only 11 percent of time is spent on indexing in the-

one-dimensional PA written by Burrus 136). We observed also, that

the time varied significantly with the selected address space LI/1N.

Hence, a part of the solution would consist in selecting an

appropriate address space.

In the following, we provic a method that solves the multi-

dimensional indexing problem represented by (106).

indexing Problem

To solve the ge1heral two-imensional indexing problem, we

assume N is given in Smith normal form N =U D V with

( P 0]
o oq

and q -tp for some integer t.

The indexing problem may be enunciated as followst given a

vector a find a vector n in Luim such that

nsm (013dN)

-- 3



or, equivalently, such that

n amm Nr (115)

for some integer vector r.- (r, r2 ) Since Li/ is arbitrary, let

us use a rectangular shape for it. The dimensions of the rectangle

are denoted U and V. Then, clearly, we must have

UV-pq (116)

since pq is the number of data samples.

As we have seen in the example above, the coordinates of a

cannot be acted upon independently of each other. Zn fact, it is

only when N is diagonal that (115) can be written as two uncoupled

one-dimensional equations. But, let us stipulate at the outset that

we can operate on the second coordinate of m independently of the

first coordinate. Consequently, if the stipulation is correct,

_ ;m+ (0 -V) (Mod N)

That is, the (mod N) operation reduces to the (mod V) operation for

the second coordinate of m. Then the problem changes to: find

(r 1 r2 ) such that

N(r r2 ) - (0 -V) (117)

............. .................... 2
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The next step is to reduce the first coordinate of m by the (mod U)

operation. Butt this operation will have, in general, an effect on

the second coordinate. This effect is represented by the integer V

and we have

T T 118)

L

where (tI t2 )T is some integer vector.

Thus. the solution is obtained by solving for UV and W in

(116) - (118).. Equations (117) and (118) are linear Diophantine

equations. The solution of such equations represents another appli-

cation of the Smith normal form. We have

T T
UDV (r r2 s (0 -V)

t_~ (t T (-U )1 2

We multiply both equations by IU
" I 

to obtain

C r 
)
T =DIu-(o -V) T (119)

!r1 r2) ! ( Y

(ct t2,T D7111' (- T (120)

we let

TT
. (r1  r2 ) - (I Y2

.2

- - -- . . . . .



!(t I t 2 ) - ( 3 1 )T

U-1 11t a12 1
21 U22

Then (119) and (120) become

12 p

-VU 220 2q

WU22 -U 11 a-it 3 p (121)

W22  V 21 =- 4q

(121) is a set of four equations in seven unknowns. We first solve

for the last two equations which can be written in matrix form as

[~ ;A )T U U1 U 2)T (122)

The matrix in t"e left side of (122) can be factored in Smith normal

form as



lie

[-U 012] [0 P(02 t 012

1p 2 1-q 1  22 t 12)

--

(0 - (2' t 012)

0 b -U 22
(U2 2 . t 012)

where a and b are integers that solve Dezout's equation

a 022- b t U12 (U 22' t U 12)

Then (122) has a solution if and only if

[1 0 j"11 U U ) T
0 P(U22" t U12) _U22 U12 .21

is an integer vector. This condition is reduced to

'°(o.p(" ", t
i.0 -U )T - : :

"( i

.-....,.,. ..-.... , -.- . ,. ..- .. ... ..... .... ... , ,.. ... . .,. . . , . ,,- . . .- . - . , ..:
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must be an integer vector. Thus# we may set

U - p (022. t 12) (123)

and then, solving for V and W we obtain

q- (124)
(U22, t U1.

Wn a p  ( (mod V( (125)

In (123) - (125) we assume that (U22. t U12) is strictly positive.

If it is strictly negative, we can replace it by its absolute

value. We shall discuss the case of (0221 t 012) equal to zero

shortly after we summarize what we have done so far.

Tlo solve the indexing problem (115), we organize the data as a " - -

9 by V rectangular array. Then the first coordinate of m may be

modified in a (mod U) fashion. At the same time, the second coordi-

nate is modified accordingly, i.e. W is added (subtracted) to it each

time -U is added (subtracted) to the first coordinate. The second

step consists of reducing the second coordinate of a in the (mod V)

fashion. This step has no effect on the first coordinate.

If (022, t 012) Is zero* we cannot use this procedure for we

cannot evaluate (124). The alternative is to reverse the roles of

--.

." ;. C-

- .-.
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the* first and second coordinate, we still organize the data as a U

by V rectansgular array, but it is the f irst coordinate which is re-

duced Independently of the other coordinate. Equation (117) and

(118) &to changed to

TTN(r I r 2) =(-V 0)

T T (126)

Using the same analysis as above, we obtain

U -p (aU21, t U 11) (127)

V (U21, t 11

Va p U 2 2  (mod V)

* where a and b satisfy

aU21 + tU 11 -(U 2 1 ' t U 11)



Again, In (127) we assume that (1U21- t 011) Is a nonzero.

As an Illustration, Let as consider the example given at the

beginning of this section. We have p -2 and q -6. Thus t * ap

3. Also since

U (0 -2

we get (U22, t U12) -(-
2 , 3) -1, and

-2a + 3b I1

is solved with a I and b =1. We substitute these values in (123),

(124), (125) to get

11.2
V. 6
W 2

Let us now solve (113) again, i.e. solve

n (S 2))I (mod N)

Subtract U to the first coordinate and, at the same time, add W to

the second coordinate, to get

...... .... .. .................... . . .. 



f5 (3 4)T (mod U

which is the answer we obtained previously. Apply the operation a

second time, then

n 6) (mod N)

The last step consists of reducing the second c~ordinate (mod V) and,

therefore

n 0) T

which is the final answer since (1 0)? is inside the 2 by 6 address

space.

The coding of this procedure contains six addat&-ons and four

IF statements. The address of the data is contained in the atrLy

IR. IR (1,1) represents the first coordinate of n and IR (1,2) the

second coordinate. The numbers U, V and W are precalculated and fed

to the subroutine as variables NSIGI, RSIG2 anId NSIG3.

Since the vector n in (106) can take both positive and nega-

tive values, the procedure should handle both cases. We will see in

section three that the number of operations can be cut in half for

the hexagonal case because n is known not to take negative values.

Evaluation of the EWA and the UDV Algorithm

There are a variety of cost measures used to evaluate the-

performance of algorithms. Two of the most common measures of DFT
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algorithms are the total numbers of additions and multiplicationss.

It is uscally not enough to base a comparison solely on these

numbers. Other important parameters may be the total number of data

memory accesses and the amount of indexing work. These measures are

intended to model in a simple way the control complexity overhead in

a DFT algorithm. Computational speed is perhaps the best measure of

the real working of the algorithms, although it is both programmer

and processor dependent. An additional means of comparing algorithms

is by the amount of memory space needed for the program.

Three algorithms are chosen for examination. Singleton's

mixed radix rectangular FFT was chosen as a standard, general purpose

FIT that is commonly available. Its listing is in the IEEE Press

book (381. From Singleton's algorithm, which uses the Cooley-Tukey

mapping, we constructed the U D V algorithm. These algorithms are

general purpose, mixed-form, mixed-radix FFT. It consists of input

and output indexings and a rectangular D1 which is evaluated by

Singleton's FFT. The third algorithm is the mixed-form, mixed-radix,

in-place and in-order KPPA. the short-lengths rectangular DF's in

the MPFA are evaluated in the row-column fashion. The row/column

one-dimensional DrFs are taken from a set of very fast D7's developed

by Winograd and known as WirAs [36). We used WFTAs of length

2,3,4,5,7,8,9 and 16. Other Wf'TAs of length 11,13,17 and 19 were

*designed by Jotinson and Burrus (391, but were not used here. Our

S." choice of lengths allows us to have up to 3481 different lengths (59

choices for each dimension), up to 5040 by 5040. In table 1 we list

the number of real multiplies and additions for the short-length

complex WFTAs used in the MPFA.

U ,M .
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The programs were run on a Data General Eclipse V/10000 at

the Digital Signal Processing laboratory of the School of Electri.a1l

Engineering. The V/10000 is a 32-bit general-purpose processing

system with two megabytes of memory and floating-point hardware. The

floating-point hardware has an add time of .6 us and a multiply time

of about I us. For each FMT a main program was written that provides

random numbers as input. The random numbers are taken from a uniform

distribution of zero mean and standard deviation of one. Table 2

shows the execution times in milliseconds for the three algorithms

for different sequence lengths. The DITs have rectangular form and

thus U and V are identity matrices. Because of the high number of

allowed lengths, not all of them could be tested. In table 3, we

compare the U D V algorithm and the MPFA for various lengths and with

1 2I

In table 4, we select Instead

10 7

The second U matrix was chosen to contain large integer elements in

order to observe the influence of those elements on the execution

times.

2-1.....
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The times obtained are central processor times, which are

measured with one millisecond resolution. The times measured on

successive runs rarely differ by more than four milliseconds and it

is the amallest of these measures which is recorded.

A comparison of the UDV algorithm and Singleton's algorithm in

table 2 shows that approximately 13 percent of the time is used in

indexing and 87 percent in actual DFT calculations and unscrambling

(the unscrambling contained in Singleton's algorithm).

Table 3 indicates that selecting a nor-identity U matrix has

only a small effect on the speed of the FITs. Only about 2 percent

of time is. due to the fact that U is not an identity matrix.

Moreover, in table 4 we observe that even when U contains larqe

integers, its effect on the execution time is fairly constant.

Tables 3 and 4 indicate clearly that the MPFA is Li'ster than the

U DV algorithm. The -times for the U DV algorithm are rather

erratic as a function of sequence length. This results from the

program having fairly ef-icient sections for power of two factors,

but less efficient sections for odA factors. The program is also

slowed by the twiddle factors that are necessary in the index mapping

used.

The results show that a mixed form FMT can be constructed from

a rectangular FFT with only a smill increase in execution time. In

addition, we see that the MPFA is a very good choice for general

purpose rF. In fact, we observe from the table that the ,4PA is

faster than even the rectangular Singleton's algorithm.

P .-

'..

I'H
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Table I WAm Opecations Oaeit

W FIA Length Mutliplies Adds

2 0 2

3 *2 6

I4 0 8

5 S 17

7 8 36

S 2 26

9 10 49

.516 10 74

57
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Table I Tim In Kilk iseconds for Kectaargular VWM

dot (mi) Factorization Singleton UMD MPFA

63 lx(7x93 6 8 6

120 1E(3Kxx8) 12 is 11

180 ix(4x5x9) 17 20 14 --

I80 (3x4)x(3x5) 16 18 11

252 1x(4x7x9) 29 33 21

252 (2x7)x(2x9) 29 33 20

315 1x(5x7x9) 39 44 29

400 (4x5)x(4x53 36 41 26

*-630 lx(2x~x7x9) 84 95 62

1080 (2x3x5)x(4x9) 125 140 95

1260 x(4x5x7x9) 179 199 130

1260 42x3x5x7)x(2x3) 170 189 115



Table 3 T in Mi Nlliseconds tot mr with U -[I 2j

dot (N) Factor ization OWV MPFA

112 (4x1)x(4x7) 14 10

252 lx(4x72c9) 38 26

400 (4x5)x(4xS) 42 20

1080 (2x3x5)x(4x9) 141 96

1260 (2x3xS)x(2x3'tlx7) 191 116

Table 4 Time in Milieconds tot DVF vith U 1 [0 3

det (N) .Factorization UDV MPFA

112 (4x1)x(4x7) 14 10

2S2 1x(4x7x9) 39 27

400 (4x5)x(4x5) 13 29

1080 (2x3x5)x(4K9) 143 98

1260 (2x3xS)K(2x3xlx7) 194 lie
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fTe Nexagonal Prime Factor algorithm

In many applications, the form of the periodicity matrix is

fixed. For instance, for rectangular DFTs the U and V matrices are

equal to the identity matrix. Often, in areas such ar geophysics and

antenna array deesign, the signals are sampled hexaqonally. The

periodicity matrix has then the form

[N "]

where M is an integer such that 3N2 is the total number of data

samples. Its Smith normal decomposition is

to 00 o -', (128

In such cases where the form of N is fixed, it is clear that

it is advantageous not to use a general-purpose FIT algorithm. For

instance, a rectangular PFA is clearly faster than the MPFA because

the indexing problem is significantly reduced. In this section, we

will show how to design a fixed form PA algorithm. More specifi-

cally, the hexagonal form is selected to demonstrate the method.

From (128), we obtain

.-I ... .. .. (129).....

7 1°
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Then (123) - (125) yield

U N
V -3 (130)

W N

Therefore, the data is best organized as a 3H by N rectangular

array. In addition, because of the special form of U. it can be

shown that n, given by the indexing equation (106), has positive

coordinates for every N. This observation makes the indexing

algorithm a little simpler than in the general case. The hexagonal

indexing scheme can be formulated as follows:

1) if N C n 2 < 2N. subtract N to the second coordinate of n
and add n to the first coordinate

2) 2fN 2 n 2 , subtract 2N Lo second coordinate and add 2N to
first coordinate

3) if 3H 4 N, subtract 3H to first coordinate.

This scheme was used to program a hexagonal PA algorithm.

An alternate factorization of N is given by

The first observation we make on (131) is that P and commute. Thus

... ..
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the NPFA algorithm will result in matrix-P DFTs and matrix-Q DITs.

The second observation is that S is a rectangular matrix, which sim-

plifies further the indexing problem. In addition, the matr x-O DFT

is alvays & N by N DFT and thus, if N is factored into prime numbers,

it can be evaluated very effiL antly by the newly presented p by p

FFT algorithms. The matrix-P DI? is a non-rectangular 3-point DFT

with a fairly trivial indexing problem. In our implementation, the N

by N short module is evaluted by the row-column method.

In , be 5 we list the execution times of the MPFA and the

hexagonal PFA (HPFA) for various lengths. We find that the HPFA is -

approximately 10 percent faster than the MPFA. It is important to

note again that the savings obtained in table 5 are the result of the

knovledge we have of the U matrix, which allowed us to reduce the

complexity of the indexing problem.

Optimal Periodicity Matrix

It is clear from our discussion that there are various ways

for constructing an algorithm using the PFA technique. In the

algorithms described above, the modules were one-dimensional WFTTAs.

Our discussion of the classification of MDFTs suggests a more general

approach. It consists in using two levels of modularity: the first

level separates the short matrix DFTs according to lengths, the

second level evalaates the short DFTs in an appropriate manner.

Rence, the second level for each length no is composed of a finite

set of submodules corresponding to the finite number of nonequivalent

length n DIPTs. This bilevel structure allows us to include new

a m a



Table 5 Tise in Milliseconds foc Hatriz-N WT

det (N) KPFA RprA

48 5 5

75 98

147 13 12

300 27 25

588 59 53-.-

1200 128 117

A-61
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for instance, Auslander et al have recently proposed an efficient

method for evaluting p by p DFTs when p is a prime. In the

algorithms we designed all the submodules are evaluated in the

row-column manner. Sybrid algorithms, where some of the submodules

are evaluated using the row-column technique and the others are eva-

luated in more efficient ways, are possible. Some tradeoffs have to

be exercised between execution speed and program length.

We now proceed to answer the questions we asked in Chapter

II: given a finite extend signal x, what is the best periodicity

matrix that can be used to compute the DET of x? It is clear that

the answer depends on the shape of the region of support, and on the

algorithm for evaluating DFTs at hand. The problem in its most

general form is still open, nevertheless some answers can be given if

the shape of the region of support is rectangular. For instance, -

assume we have a 4 by 4 rectangular array in the first quadrant of

the time domain. Moreover, assume we have at our disposition the

MPFA algorithm we designed. The first periodicity matrix that can be

used is

which is factored as

t0 IJ L0 4J ., '

. . . ..... ..... ..... .....
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The K~rh evaluates this DVT as eight length-4 M~s (four tows and

four columns).* The execution time is found to be 2.5 a.

An alternate periodicity matrix can be

which is factored as

This DIT is evaluated as two length-S MYThs and eight length-2

WYThs. The execution time is 2.0 ms.

Finally, N can be-selected to be

N -[4 4j

and the Smith normal factorization is

The DrT is then evaluated as one length-16 MYTh in 1.4 ma. L.

Therefore, the third selection of N Is to be preferred. This result
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can be explained by the fact that the 16-point WrTA is mule efficient

than the corresponding number of length-S WPTAs and length-4 WrTAs.

A general conclusion may be inferred which is that for a rectangu-

larly shaped signal select the periodicity matrix that leads to a DIT

which uses the most efficient submodules of the FIT algorithm.

I CCA1
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condou, ions

The objective of this thesis was to develop efficient

algorithms for evaluating general multidimensional Dris. The first

issue which was addressed concerned the formulation of a mathematical

context in which better understanding of the inner workings of the

DoF is possible. More precisely, the multidimensional indices,

present in the DFT, were considered to belong to a lattice

structure. The computational structure of the DYT was then shown to

be closely related to the special properties of this mathematical

structure.

The second issue was concerned with the extension of the

important Chinese Remainder Theorem which plays an important role in

the effective handling of the D0T indices. We formulated and gave a

new class of FiT algorithms which provide the same interesting add-

multiply-control tradeoffs available in the PVA, WLTA and split

nested DFT. We showed that these algorithms can also be used,

advantageously, to evaluate rectanqular DTs.

The relationship between nonrectangular OMs and rectangular

ones was shown to be linked to the Smith Normal factorization of the

periodicity matrix. In fact, this factorization allowed us to

develop an algorithm (the 0 DV) algorithm which reduces a general

*- .* * *.....':.. . . . . . . . . . . . . . . . . .



F" 137

DIr Into the combination of a rectangular DIT and a set of input and

output indelings. "

Finally, practical algorithms were constructed that implement

both the UV V and the MPFA algorithms. The success of these

algorithms was found to be contingent on an efficient implementation

of the input and output indexings. We derived a method which solved

these indexings in a successful way. In addition, we implemented an

efficient hexagonal P"A as an illustration for constructing M

algorithms with a given specific form.

Recommendat ions

A general approach was used to analyze the multidimensional

DPI. The objective of the thesis was to concentrate on the extension

of the PFI and NITA algorithms. Rowever, further work can be pursued

to apply the procedure developed in this thesis. First, the lattice

structure can be used to consider not only the number of multipli-

cations in a DIT, but also the number of additions, the number of -

data memory accesses, the amount of indexing work, etc.

Another topic for future research concerns the development of

a method for finding optimal periodicity matrices. In our thesis we

discussed the case where the finite extent signal has a rectangular

form. It if interesting to ask how to choose the periodicity matrix

when the signal does not have a rectangular extent. One solution

consists in padding the signal with zeros until it becomes a

recta.&gle. But this method can become very inefficient since it

enlarges the size of the DFT.

ft. ft-ft.

ft% -



An Interesting application which may potentially benefit from

the results presented in this thesis Is the atea of number theoretic

tranform (NTs). The NTT has a structure similar to the DPI,bu

with complex exponential roots of unity replaced by Integer roots and

all operations are defined modulo an Integer. In the MI it is the

signal itself which is treated in a number theoretic way. The

lattice structure could become an ideal structure for handling a
L.

multidimensional signal. Our approach can then be used to develop

fast algorithms for evaluating multidimensional NTTs.

L
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APPENDIX

THE MIFA ALGORITHM

C
C THIS MAIN ROUTINE TESTS THE MATRIX PRIME FACTOR ALGORITHM
C
C liNt IS A RANDOM NUMBER GENERATOR
C

DIMENSION X(O:1O4,O:34),Y(O:IO4,fl:34),NN(4,2),N(1,2)
INTEGER BUFF(8) ,BIJFF2(8)
INTEGER U(2,2)
DATA N,NN/2,6,1,2,1,1,3.2,1,1/L
DATA NSIG1,NSIG2,NSIG3,M/2,6,0,2/
DATA U11,0,11
CALL FOPEN( 20, "HOUR"l)
DO 11 I-O,NSIG1-1
DO 12 J-0,NSIG2-1
X(I ,J)-IJNI( 1)
Y(I,j)-O.O

12 CONTINUE
11 C~ONTINUE

CALL.F!N(XY,NNN,M,NSIGI ,NSIG2,NSIG3,U)
WRITE(20,100) X,Y

100 FOIU4AT(E12.4)
CALL FCLOSE(20)
STOP
END
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SU3ROUTINE fIN(X.Y,N,NN,H,NSIGI ,NSIG2,NSIG3,UI)
C
C THIS SUBROUTINE IS A MATRIX PRIME FACTOR FFT ALGORITHM
C
C X AND Y ARE THE REAL AND IMAGINARY PARTS OF THE INPUT DATA
C ON OUTPUT, X AND Y CONTAIN THE COMPLEX SPECTRUM
C THE INPUT DATA SHOULD BE ORGANIZED AS AN NSIGI BY NSIG2 ARRAY
C THE OUTPUT IS IN ORDER ,I.E IT IS ORGANIZED Il THE SAME MANNER
C AS THE INPUT.
C
C Ul IS THE INVERSE OF THE INPUT INDEXING MATRIX U.
C M IS THE NUMBER OF FACTORS O? N. THESE FACTORS ARE CONTAINED
C IN THE ARRAY NN. THEY SHOULD BE RELATIVELY PRIME TO EACH OTHER
C N(1,Z)-NN(Il)-,I (2 )h...*NN(H,1)
C

DIMENSION IT(1,2),IL(1,2),IR(I,2),IN(16,2),IM(O:255,2)
INTEGER N(1,2).UI(2,2),NUMI(16),NUM2(16),JR(16,2)
DIMENSION X(O:35,0:37),Y(0:35,0:37),IP(1,2),NN(4,2)
INTEGER TNI,TN2,UINI,U2NI,UIN2,U2N2,UITNI,U2TNI,UITN2,U2TN2

C
C ARRAY IM CONTAINS THE ADDRESSES OF THE INPUT POINTS TO THE
C NI BY TNI SMALL DFT MODULE . ARRAY JR CONTAINS THE ADDRESSES
C OF THE OUTPUT POINTS TO THE SMALL OFT OF LENGTH NI (WFTA OF
C LENGTH NI) WHERE NI IS ONE FACTOR OF N.
C WFTA ARE THE VERY EFFICIENT SMALL LENGTH DFT DEVELOPED BY
C WINOGRAD.THERE ARE WFTA OF LENGTHS 2,3,4,5,7,8,9,16,(11,12,13)
C

DATA C31.C32 /0.-86602540,0.5/
DATA C51,C52,C53 /0.95105652,1.5388418,0.363271261
DATA C54,C55 /0.55901699,-1.25;
DATA C71,C72,C73 /-1.16666667,0.79015647,0.055854267/
DATA C74,C75,C76 /0.7343022,0.44095855,0.34087293/
DATA C77,C78 /0.53396936,0.87484229/
DATA C92,C93,C94 /0.93969262,-0.17364818.0.76604444/
DATA C96,C97,C98 /-0.34202014,-0.98480775,-0.64278761/
DO 200 JI-1,M
NI-NN(JI )
TNI-NN( J ,2)

N2-N(1,1)/NI
Tr12-N(1,2)/TNI
UINI-UI( 1, I)*N1
U2NI"UI(2,1)*N1
UIN2-UI(!,1)*N2
U2N2-UI(2, i)*N2
UITNI-UI( I,2)*TNI
U2TNI.UI(2,2)*T1
UITN2-.UI(1,2)*TN2
U2TN2"UI( 2,2) *TN2

C
C
C COMPUTE THE OUTPUT PERMUTATION HAP
C

. -150
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141

DO 215 11-1,HI
NUNI(i)-MOD(KI ,Nl)+l

215 Kl141+N2
KI-0
DO 216 Il-i ,TNl
NUM2(11)-MOD(KI .TNI)+1

216 Kl-K1+TN2
C
C DO THE INPUT PERMUTATION
C

IT(l,l)-O
ITCI,2)W0
DO 210 J2mt,TN2

ILCI .2)=IT(1 ,2)
DO 220 J3-1.N2

IrPi .2)-IL(1 .2)
J-u1
DO 230 J4m! ,TN1

IR(1I,2)-IP( 132)
DO 240 J5*1,Nl

C
C REDUCE IK(J) MODULO THE MATRIX Ni
C

339 IF(IR(l,l).LT.NSIGI) GO TO 338
IR(1 ,l)-IR( 13 )-NSIGI
11(1 ,2)-'IR( I 2)+NSIC3
GO TO 339

338 IF(IP.11)GE.O) GO TO 340
IR(l,1)-IR(1,1)+NSIGI
IR(1,2)-IR(1I,2)-NSIG3
GO TO 338

340 IFCIR(1,2).LT.IiSIG2) GO TO 343
IR( I 2)-IR( I.2)-NSIG2
GO TO 340

343 IF(IR(1,2).GE.0) GO TO 342
IR(1 ,2)-IR( I.2)+NSIG2
CO TO 343

342 IM(i,I)-IR(L,1)
IM(J,2)-IR( 1,2)
j -J+1
IF(JS.CT.1) GO TO 239

IP(1,2)-IR(I.2)
239 IR(l,l)-IR(1,1)+UINZ



240 IRCI ,2)-IR(1I,2)4UZN2
IF(J4.GT.1) GO TO 229

229 IP(l,1)-IP(1,1)+UITN2
230 IPC1,2)-1P(1,2)+U2TN2

C O KATRIX-P DFT

C
C
C I'MW DFT s
C

IF(NI.EQ.1*0 GO TO 205
Is-I

DO 70 IA-i ,TNI

K-M+N
XtN1l)ICK1

IN(1,2)-IK(K,2)

JR(NUM1(1),2)-ZN(1,2)
DO 80 l5-2,NL
K-K1+15
INCIS, 1)-IM(K, 1)
IN(15,2)-IM(K.2)

80 JR(NUMI(!5),2)-li(I5,2)
GO TO (990,102,103,104,105,990, 107,990, 109) N1

70 CONTIN!UE
C
C COLUM~ DFVS
C
205 15-2

IF(TNI EQ.I) GO TO 219
DO 110 16-1,Nl1

INC1,2)-IM(16,2)
JR(14U42(1),1)-!N(i,1)
JR(NUM2(I),2)-IN(1,2)
111-0
DO 120 17-2,TNI

114(17, 1)-IM(16+MI .1)
IN(17,2)-IM( 164411,2)
JR(NUM2(17), 1)-IN(17, 1)
JR(NUMK2(17) ,2)-IN(I7,2)

120 CONTINUE
GO TO (990.102,103,104,105,990,107,990,109) TNIl

110 CONTINUE
219 lF(J3.GT.1) GO TO 221
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221 IL(I,l)-IL(1,1)+UINI
220 IL(1,2)-IL(I.2)+U2NI

IT(l,l)-IT(1,1)+UITNI
210 IT(1,2)-IT(1,2)+U2TNI
200 CONTINUE

RETURN
990 STOP
c
C WFTA M1-3
c
C
103 Tl-(X(IN(3,1),IN(392))-X(IN(2,1).tN(2,2)))*C31

RI-X(IN(3.1) ,IN(3.2))+X(IN(2,1),IN(2,2))
SI-Y(IN(3,I) ,IN(3,2))+Y(IN(2, 1),IN(2,2))

U2-Y(IN(I,l),IN(1,2))-Sl*C32
X(JR(1, 1),JR(I,2))-X(IN(1, 1),IN(1,2))+RI
Y(JR(l,l),JR(1,2))-Y(IN(1,1),IN(1,2))+SI
X(JR(3,1) ,JR(3,2))-T2+Ul
XCJRC2,1) ,JR(2,2))-T2-Ul
Y(JR(3,1) ,JR(3.2))-U2-Tj
Y(JR(2,1) ,JR(2,2))-U2+Tl
GO TO (70.110) IS

c WFTA N-5

105 RI-X(IN(2,l),111C2,2))4X(IN(5,1).,w(5,2))
R2-X(IN(2,I),IN(2,2))-X(N(5,),11C5,2))
S1-Y(1NC2,I),IN(2,2))+Y(1N(5,I),IN(5,2))

S2-Y(IN(2,1),IN(2,2))-Y(IN(5,1),IN(5,z))
R3-X(IN(3,1),IN(2,2))-(IN(5,I),xN(5,2))
R3-X(IN(3,I),IN(3,2))-X(IN(4,I),IN(4,2))
S3-Y(IN(3,I),tN(3,2))-y(wN(4.1),zN(4.2))
S3-Y(IN(3,I),IN(3,2))-Y(xN(4,I),IN(4,2))

* Tlm(R2+R4)*CSI
* UI.(S2+S4)*C51
* R2-TI-R2*C52
* S2-Ul-S2*C52

R4-T1-R4*C53
SA.UlS4*CS3
Ti-C RI-R3) *C54
U 1-( SI-S3)*CS4
T2-RI+L3
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U2-SI+S3
X(JR(1,1),JD(1,2))-X(IN(1 .1),IN(1,2))+T2
Y(JR(1,1),JR(1 ,2))-Y(IN(1,I),IN(1,2))+U2
T2-"X(JR(t,1) .JR(1 .2))+T2*C55
U2-Y(JR(l,1) ,JR(1 ,2))+U2*C55
RI-T2+Tl
R3-T2-Tl
SI-u2+UI
S3-U2-Ul
X(JR(2,I),JR(2,2))-R1+S4
X(JR(5,1) ,.i(5,2) )-RI-S4
Y(JR(2,l),JR(2,2))-Sl-R4
Y(JR(5,1) ,JR(5,2))-S+R.
X(JR(3, 1) ,JR(3,2))'-R3-S2
X(JR(4,l) ,JR(4.2))-R3-S2
Y(JIL(3, 1) ,JR(3,2))-S3+R2
Y(JR(4,1) ,JR(4,2))-S3-kU2
GO TO (70,110) IS

C
C WFTA N-2
C
102 T1-X(IN(l,l),lN(I,2))

X(IN(1, 1),IN(1 ,2))-TI+X(IN(2,I),IN(2,2))
X(IN(2,I),IN(2,2))-TI-XCIN(2,I),IN(2.2))

Y(IN(2,I),IN(2,2))-TI-Y(IN(2,I),IN(2,2))
GO TO (70,110) IS

C
C WFTA N-4

104 R1-X(IN(l,l),IN(I,2))+X(IN(3,I),IN(3,2))
R2-X(IN(l,1),IN(I ,2))-X(IN(3,1),IN(3,2))
Sl-Y(IN(l,1),IN(1,2))+Y(IN(3.1),IN(3,2))
S2-Y(IN(l,l),I[N(1 ,2))-Y(IN(3,1).IN(3.2))
R3-X(IN(2,1) ,IN(2,2))+X(IN(4,I),IN(4,2))
R4-X(IN(2,1),IN(2,2))-X(IN(4,1),IN(4,2))
S3-Y(IN(2,1),IN(2,2))+Y(IN(4,I),IN(4,2))
SA-Y(IN(2, 1),IN(2,2))-Y(IN(4.1),IN(4,2))

X(JR(3, 1) ,JR(3,2))-K1-R3
YCJR(i .1) ,JR(1 ,2))-SI+S3
Y(JR(3, 1),JR(3,2))-S1-S3
X(JR(2,1) ,JR(2,2))aR2+S4
X(JR(4,I) .JR(4,2))-R2-S4
Y(JR(2,1) ,JR(2.2))-S2-R4
1(jR(4, 1),JRt(4,2))-S2+R4
GO TO (70,110) IS

C
C WFTA N4-7
C

... .. . . .. . . ......



107 I-X(N(2,),IN2,2)+X(I(7,IIN145)

107R-X(IN(2,I),IN(2,2))-X(IN(7,1),IN(7,2))
sI-Y(IN(2,I),INC2,2))-Y(IN(7,1),IN(7,2))
SI-Y(ZN(2,I),IN(2,2))-Y(INC7,I),IN(7,2))
S3-Y(tN(3,1),IN(2,2))-X(IN(6,1),IN(7,2))
R3-X(IN(3,I),IN(3.2))-X(IN(6,1),IN(6,2))
S3-Y(ZN(3,I),INC3.2))+Y(IN(6, I),IN(6,2))
S4-Y(1N(3,I),IN(3,2))-Y(IN(6,I),IN(6,2))

R5-X(IN(f.,1),IN(4,2))+X(IN(5,1)IN(5,2))
R6-X(IN(4,1).I4(4,2)'-1C(IN(5.1),IN(5,2))
S5-Y(IN(4,I),UI(4 2))+Y(1N(5,I),IN(52)).

T lm&l+f3+t5
Ul-SI+S3+S5
X(JR(I,l).JR(1,2))-X(IN(I1I),IN(I,2))+Tl
Y(JR(I,1),JR(I,2))-Y(IN(l,I),LN(1,2))+UI
TI-X(JR(t, I),JR(1, 2))+C71*Tl
Ul-Y(Jl(1 ,1) ,JR(I ,2))+C7 I*uI

P T2-C72*(RI-R5)
U2-C72*(SI-S5)
T3-C73*(R5-R3)
U3-C73*(S5-S3)
T4-C74*(R3-RI)
U4-C74*(S3-SI)
RI-Tl+T2+T3
R3-TI-T2-T4
R5-TI-T3+T4
SI-tUl+U2+U3
S3-Ul-132-U4
S5-Ul-U3+U4
Ul-C7 5*(S2+S1.-S6)
T1.C75*(RL2+R4-R6)
T2-C76*(R2+R6)
U2-C76* (S2+S6)
T3-C77*(R4+R6)
U3-C77*(S4+S6)
T4-C78*(R4-R2)
U4-C78*(S4-S2)
R2-TI+TZ+T3
R4-TI-T2-T4
R6-TI -T3+T4i
S2-UI+U2+U3
S4-Ul-U2-U4
S6-U I-U3+U4
X(JR(2, I),JR(2,2))-RI+S2
X(JR(7. l),JR(7,2))-Rl-S2
Y(JR(2,1),JR(2,2))-Sl-R2
Y(JR(7, I),JR(7,2))-Sl+R2
X(JR(3, 1) ,JR(3.2))-R3+S4



. . . . . . . . .. . . . . . . . . . . . . . . . . . .-- -

X(JR(6,I) ,JR(6,2))-R3-S4
T(JR(3.1) ,JR(3,2))-S3-R4
Y(JR(6, 1) .JR(6,2) )-S3+R4
X(JR(4,I) ,JR(4,2))-R5-S6
X(JR(5. 1),JR(5,2))-R5+S6
Y(JR4, 1) ,JR(4,2))-S5-4R6
Y(JR(5, 1),JR(5,2))-SS-R6
GO TO (70,110) IS

c
c WFTA N-9
c

109 RI-X(IN(2,1),IN(2,2))+X(IN(9,J',IN(9,2)).
R2-X(IN(2.1),IN(2.2))-X(IN(9,1),IN(9 .2))
SI-Y(IN(2,I),IN(2,2))+Y(IN(9,1),IN(9 .2))
S2-Y(IN(2,1),IN(2,2))-Y(IN(9 ,l),IN(9,2))
R3-X(IN(3,1),IN(3,2))+X(IN(8, 1),IN(8,2))
R4-X(IN(3,I) ,IN(3,2))-X(IN(8,1),IN(8,2))
S3-Y(IN(3,I),IN(3,2))+Y(IN(8,I),IN(8.2))
S4-Y(IN(3,1),IN(3,2))-Y(IN(8,1),IN(8,2))
RS-X(IN(4,1),IN(4,2))+X(IN(7,l) ,IN(7,2))
T--(X(INC4, 1),IN(4,2))-X(IN(7, l),IN(7,2)))*C31
S5-Y(IN(4,I),IN(4,2))+Y(IN(7,I),IN(7,2))
U--(Y(INC4, 1),IN(4,2))-Y(IN(7.I) ,IN(7,2)))*C31
R7-X(IN(5, 1) ,Ii'(5,2))+X(IN(6.1) ,IN(6,2))
R8-X(1t4(5,1),IN(5,2))-X(IN(6,1),IN(6,2))
S7-Y(IN(5,I),tN(5,2))+Y(IN(6,1),IN(6,2))
S8-Y(IN(5,1),IN(5,2))-Y(I(6, 1),IN(6,2))
R9-X(IN(1,1),IN(1 ,2))+R5
S9-Y(IN(l,l),IN(1,2))+S5

T2-(R3-R7)*C92
U2-( S3-S7)*C9 2
T3-(RI-R7)*C93
U3-(SI-S7)*C93
T4-(R1-I3)*C9.
U4-( S1-S3)*C9 4
RIO-R1+R3+R7
S1O-SI+S3+S7
KI-TI+T2+T4
R3-TI-T2-T3
ft7=T1+T3-T4
SlInUl+U2+U4
S3nUl-U2-U3
S7-U 1+U3-U4
X(JR(l, 1),JR(1 ,2))-R9+R1O
Y(JR(1 1) ,JR( 1,2))-S9+SIO
R5-R9-RIO*C32
S5wS9-SI0*C32
R6--( R2-R4+R8) *C3 1
36-C S2-S4+S8) *C3 I
T2-C14+RS)*C96
U2o( S4+SS)*C96
T3-(R2-R8)*C97



U3us(S2-SS)*C97
T4-(R2+RA)*C98
U4-(S2+S4)*C98
R2-T+T2+T4
R4-T-T2-T3
RB-T+T3-T4
S2-U+U2+U4
S4-U-U2-U3
SS-U1J3-J4
X(JR(2,1),JR(2.2))-RI-S2
X(JR(9.,1) ,JR(9, 2) )..R+S2
Y(JR(2,1) ,JR(2.2))=S1+R2
Y(JR(9,* ) ,JR(9 ,2) )-S1-R2
X(JR(3, 1) ,JR(3,2))wR3+S4
X(JR(8, 1).JR(8,2))-R3-S4
Y(JR(3,1) ,JR(3,2))-S3-R4

lk Y(JR(9, 1) ,JR(S,2))-S3+R4
X(JR(4, 1) ,JR(4,2))-R5-S6
X(JR(7,1) ,JR(7,2))-R5+S6
Y(JR(a,I) ,JP(4,2))-S5+R6
Y(JR(7,1) ,JR(7,2.1)-S5-R6
X(JR(5, 1),JR(5,2))-R7-S8
X(JR(6,1) ,JR(6 .2))-R7+SB
Y(JR(5,1) ,JR(5.2))-S7+R8
Y(JRC6, 1) JR(6,2))-S7-R8
CO TO (70,110) M3

c
END
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SUMKARY

In evaluating the multidimensional discrete Fourier transforms

(DFTs) or circular convolutions for rectangularly periodic sequences, it

has been very common to apply one-dimensional algorithms, and its appli-

cation is very straightforward. However, it becomes cumbersome for

periodic sequences other than the rectangularly periodic ones.

In this paper, a general method of applying one-dimensional

algoritnms to the general multidimensional case is presented for the

evaluation of circular convolutions and DF-%. This method stems from

the decomposition of the periodicity matrix for an arbitrarily periodic

sequence which gives the new coordin-te system on which the sequence

Z'4' can be viewed rectangularly periodic. This paper also presents how the

method is related to the Winograd Fourier transform algorithm as a

special case.
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CHAPTE I

IIITODUCTIOI

As digital signal processing techniques have become popular.

many algorithms have been developed to compute discrete Fourier trans-

forms (DFTs) and circular convolutions which have reduced the corputa-

tional complexity of these calculations. In the multidimensional case,

an alternative way of reducing the computational complexity is to reduce

the number of samples to represent the original signal. This can be

achieved with a proper sampling scheme.

The most commonly encountered sampling scheme is rectangular

sampling. However, it cannot be considered as an optimal sampling

scheme on all occasions. For example, for circularly band-limited sig-

nals hexagonal sampling requires 13.4 fewer samples than rectangular

sampling (1. One of the reasons that other sampling schemes are less

well appreciated than recta,agular sampling is that for rectangularly .

sampled signals, one-dimensional algorithms can be generalized straight-

forwardly in evaluating DFTs or circular convolutions, while for the

signals sampled with other schemes, it is much more complicated.

In this research, a unified treatment was done to compute DFTs and

circular convolutions for general multidimensional signals. The main

Idea is that after changing the form of the DFTs or circular convolutions

with non-diagonal periodicity matrices into a form using diagonalized

periodicity matrices, we can apply one-dimensional algorithms directly.

. .. . ....... ....... . .
.... ... ... .... ... ... .... ... ... ...
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- . This was done by decomposing the periodicity matrix.

This paper Is divided Into five chapters. Chapter 11 presents a

literature survey and background study. The first subsection of back-

ground is primarily concerned with definitions, especially the definition

of the periodicity matrix. In the next subsection, the decomposition pro-

cedure is introduced. Chapter U11, which is the main chapter, is devoted

to the mathematical derivation of generalizing algorithms for circular

convolutions and the DF~s using the decomposition technique. WIith the

method derived in Chapter III any one-dimensional*&lgorithms can be

applied to the general multidimensional case In evaluating the DF~a or

circular convolutions. In Chapter NV, the efficiency of the new method

is discussed when it is applied to the Winograd Fourier tra,,sform

algorithm (WYTA) [3) for the evaluation of the general multidimensional

DF~s. Finally, the conclusions are presented In Chapter V.



CHAPTER II

LITERATURE SURVEY AND BACKCROUND

2.1 Literature Survey

The necessity for developing fast and efficient convolution and

DFT algorithms stems from the fact that the direct computation of length-N

convolutions and DFTs requires a number of operations proportional to N
2

which becomes rapidly excessive for large dimensions.

One of the most important algorithms for computing one-dimensional

DFTs is the fast Fourier transform algorithN (FFT) (81 introduced by

Cooley and Tukey In 1965, which computes a one-dimensional N-point DFT

with the number of operations proportional to Nlog2N, when N is a power

of 2. This reduces drastically the computational complexity for large

transforms. Since convolutions can be computed by DFTs, the FFT algorithm

can also be used to compute convolutions with a number of operations

proportional to N1og 2N and has therefore played a key role in digital sig-

nal processing ever since its introduction. Recently, many new efficient

convolution 12,7,12.161 and DFT techniques (3.4,5,6,8,9,10,16] have been

introduced to decrease the computational complexity. Perhaps the most

important of these algorithms are the Winograd Fourier transform algorithm

(WFTA) (3] introduced in 1978 and a circular convolution algorithm pre-

sented by Agarwal and Cooley In 1977 [2]. The former achieves a t.heoreti-

cal reduction of computational complexity over the FIFT by a method which

can be viewed as the converse of the FFT, since It computes a DFT as a

convolution. The Agarwal-Cooley algorithm is considered as a major

• . ..

... .. .. .. .. ..... .. ... .. .. ... .. ..

,." . -. .......... . .......................................---
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breakthrough for the computation of large convolutions. It converts

one-dimansional convolutions into multidimensional convolutions by

applying Good's mapping method 1111 and achieves good efficiency.

Many of the algorithms introduced above, however, were originally

designed for one-dimensional cases, and have been used to compute the

multidimensional DFYT and/or circular convolutions of rectangularly

sampled signals. In the multidimensional case, we can think of two ways

to reduce the computational complexity. The first one is to develop

more efficient-algorithms for the multidimensional case such as the one

developed by Nussbau-.er and Quandalle [1). Their algorithm is more

efficient in computing DFTs than the WFTA if the size of the sampled

signal is NxNx...xN. The second way is to reduce the number of points

itself to represent the original signal by using a proper sampling scheme.

The most commonly encountered sampling scheme is rectangular sampling.

Algorithms for processing rectangularly sampled signals can be straight-

forwardly generalized from the one-dimensional case. Peterson and

Middleton (17), however, showed in 1962 that rectangular sampling is a

special case of a mure general sampling strategy, and also shoved that

hexagonal sampling Is the optimal sampling scheme for signals which are

band-limlted over a circular region of the Fourier plane, in the sense

that exact reconstruction of the wave form requires a lover sampling

density than with alternative schemes. For such signals hexagonal

sampling requires 13.4% fever samples that rectangular sampling. However,

It is no longer true that one-dimensional or multidimensional algorithms

can be applied straightforwardly in proc-ssing generally sampled signals.

.° .-

. .- ."o.
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The first unified treatment for such signals was done by 7

fersereau and Speaks (9) in 1981. They generalized the Cooley and

Tukey FFT algorithm for the general multidimensional case and achieved

a significant reduction in computation. However, their approach is

restricted to certain algorithms and hence its application range is

somewhat restricted. In this paper a more general treatment is pre-

sented for the computation of DFTs and circular convolutions.

2.2 Background

This section is divided into three subsections. In the first sub-

section the general idea of a periodic extension of a multidimensional

sequence and its usage is introduced. In the second subsection general

forms of circular convolution and the DFT are derived. These two sub-

sections are strictly based on Mersereau's work [I). In the last

subsection, a decomposition method [151 for integer matrices is

illustrated explicitly and plays a key role in Chapter III.

2.2.1 Periodicity of Multidimensional Sequences

A two-dimensional sequence ;(nl,n2 ) is rectangularly periodic if

;(nl,n2) =(n 1 + Nll.n 2 ) (2.1)

S- (nl.n2 + N2)

for all (ni.n 2). The numbers Ni and N2 are positive Integers. If they

are the smallest possible positive integers for which equation (2.1) holds,

"rC. ..-. .

• . a" .- .- .. .-.. '
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they -are called the horizontal and vertical periods of . Any periodic

array with horizontal and vertical periods N, and N2 is completeli

specified by N1 N2 Independent samples. For example let us consider

Figure 2.1.

Figure 2.1(a) shove a rectangularly periodic two-dimensional

sequence with horizontal period N1 - 5 and vertical period N2 - 6. Figure

2.1(b) shows the fundamental period of that sequence. It is obvious

that every sample in the sequence is equal to one ef the samples in the

fundamental period, the region 0 C n1 C N1 - 1. 0 • n N2 - 1.

It can. be seen that the rectangularly periodic sequence is a L

special case of generally periodic sequences. In the multidimensional

case, an -dimensional sequence ;(n) is said to be periodic with period

N if

x(x) - =(n + Nr) (2.2)

for all integer vectors n and r and some MxM Inteqer matrix N whose

determinant is nonzero. Such a sequence repeats itself in the M dif-

ferent directions which are defined by the colLmn vectors of N. For

this reason, N is called the "periodicity matrix" of the sequence.

While there Is no unique shape to the set of samples comprising one

period of a periodic sequence, the number of samples in any period Is

Idet NJ. which must be an integer since N is an integer matrix. The

most commonly encountered periodic sequences are those for which P Is
L

diagonal. Such sequences are called rectangularly periodic. For the

previous example,

S.°. -
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But sometimes we ecutrperiodic sequences other than rectangularly

periodic sequences such as the one showin in figure 2.2. This sequence

Is sampled on a hexagonal raster. The periodicity matrix N for this
sequence Is

4Figure 2.2(b) shows a fundamental period of the sequence in (a). As

mentioned earlier, the shape to the set of samples comprising one period

of a periodic sequence is not unique. In Figure 2.3(a), we show the

* same peri3dic sequence where the fundamental periods are shaped like

parallelograms. Any sample which is a member of one fundamental period

can be exchaa-ged for the corresponding point in any other period to pro-

* duct a different fundamental period. Thus the choice of a fundamental

period Is not unique. This Is true for any arbitrarily periodic

* .. sequence. The availability to exchange one form of a fundamental

period for another Is useful. For example, let us take Figure 2.2 and

Figure 2.3. When discussing symmetry properties of th- discrete Fourier

transform, a hexagonal shape for the fundamental period Is helpful, and

when computing the DFT. the parallelogram form Is helpful.
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n2 "

00

(a)

(b) A Fundamental Period Shaped Like a Hexagon.
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"2

(a

(b)

Figure 2.3. (a) The Same Periodic Sequence as Shown in Figure 2.2
Except that the Parallelograms are Useed to Represent
the Periods of the Sequence.

(b) A Fundamental Period in the Shape of a Parallelogram.

. . .. . . . . . . .. . . . . . .. . . . .
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(a)

(b)

Figure 2.3. (a) The Same Periodic Sequence as Shown in Figure 2.2
Except that the Parallelograms are Used to Represent
the Periods of the Sequence.

(b) A Fundamental Period in the Shape of a Parallelogram.L.
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2.2.2 General Form of the DFT and a Circular Convolution

Lot us consider a periodic sequence (n) with periodicity matrix

N. For such a sequence

i(n) - i(n + NO) (2.2)

for any integer vector r. Let Idenote a region in the n-plane which

contains one period of this sequence. This region is called the fundamen-

tal period.

As for the one-d!-*iensional case, let us assumne that ;(n) can be

uniquely represented as a finite sum of harmonically related complex

sinusoids. Then, with prime ()indicating transposit4on.

a a(k) exp'j'n (2.3)

keJ-N

where k is an integer vector aud J denotes a finite region in the

k-plane. Since the sequence ; is periodic.

i(n) ; (n + Nr) a a(k) exp j'R(n + Er)1 (2.4)

kJN

kC (k) .,pfj'RL4rjexp~j''JK
-N

Since the right side of equation (2.3) and equation (2.4) must be
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equal for all values of n,

exp~jki'R':rI ) (2.5)

for all integer vectors k and r. For non-trivial R' and N. Eq. (2.5)

implies that

R'N =2-1 2.a

or

R' 2-M-1..1

11

Idet W 2 X(k)exp[jk'2- -1j (2.7)

kcJJN

Since the complex exponentials in this sum are periodic in both nL

(periodicity matrix NI) and k (periodicity matrix N') we eec that at most

Idet HI samples of i(k) can be independent. Thus the region J,., like

l,contains only I'det .41 samples.. If X(k) is defined as

X(k) = (n)exp[-Jh'(272f )2.8

we can establish the existence of a Fourier series relation for any

'IIN
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periodic sequence. It is straightforward to verify that Eq. (2.7) and

Eq. (2.8) constitute an identity. It is also straightforward to establish i
the uniqueness of Eq. (2.8) due to the orthoganalit' of the complex

exponencials exp[-JjE'(2-r 1 )!t) over the region I N It should be also

noted that X(k) is periodic with periodicity mat- .. ':

i(k) i (k + N')(2.9) -

If x(n) is a finite-extent sequence with support confined to I.

we can use 0.3 above Fourier series relation to define a discrete

Fourier transform (OFT)j

X(k) x x(n) exp -Jk' (-)n (2.10)

X~n de (k) exp Ji' (27% )n] (2.11)

kz:J

Equation (2.10) is a general form of the DFT. Based on this we can

establish a general form of a circular convolution.

Suppose we have two finite-extent sequences. x(n) and h(n). with

support on 1 whose DFTs are X(k) and 11(k). respectively. with support on

J . Let Y(k) be the DFT of y(n) formed by

Y(k) -H(k)X(k) (2.12)

and let us determine y(n) in terms of x(n) and h(n).
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We shall begin by conside~ring the periodically extended sequence

x ,and 9with the periodicit~y Lmntrix N, and XI.and Ywith the

periodicity matrix N'. Since

i(k) -H(k)X(k) ,(2.13)

by applying the inverse discrete Fourier series, we obtain

'n) TW i ~ )X(k)expfjl'(2-N ) . (.4
Idt ikJN 2.4

By expressing X(k) as

X(k) = (me I-k(2,.VC1 )nI ,(.5

substituting it Into Eq. (2.14), and rearranging terms, we get

9(n) a x r d-et W~ H exp jh' (2-7';)(n- )

X rn)h(n - )(2.16)

Sin2ce y(n) was defined to be

(;(n) for n c

y Un (2.17)

0 otherwise
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ve can write

y(n) - x(m)h(n - m) for n c 1 (2.18.a)

or alternatively

y(n) * x(m)h(((n m))N) (2.18.b)

where (())N denotes modulo N operation. y is said to be the circular

convolution of h and x. The term circular convolution is carried over

from one-din.ensional signal processing terminology. The circular convolu-

tion can also be written in the alternate form similar to the one-

dimensional case

y(n) - h(m)x(((n - m)),) (2.19)

2.2.3 Decomposition

With non-diagonal peciodicity matrices, it is Lumbersome to compute

circular convolutions of DFTs with one-dimensional algorithms or some

multidimenstonal algorithms. However, if these general forms are changed

into the forms with diagonal periodicity matrices, it becomes straight-

forward to compute them with proper algorithms. This can be achieved by

decomposing the periodicity matrices. Since it plnys a key role rs vil be

seen in Chapter Ill, it will be illustrated explicitly. The method to

be introduced is done by Kaufman 115).

..-..

*.*........ ........
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I

Definitions

Regular unimodular matrix: A regular unimodular matrix is a

square matrix whose determinant is 1 or -1. -.

Subtraction matrix: An identity matrix for which one zero

replaced by any real number is called an elementary subtraction matrix.

If we denote an elementary subtraction matrix as U whose I-= row
roh

and j.h column is (--±) as shown below

l 0 0
U0 1 - - 2 (2.20)

0 0 1--

-3

then it has the following properties: If a matrix A is premultiplied by .'. .

i- row of A will be reduced by I times the J-h row of A. And

postmultiplication of a matrix B by U1 , reduces the jth olumn of B

by a times the i-- column of B. The following examples show these

properties;

1 00 0 1 a a a a 1S13 11 12 13
0 1 - a21 a2 2  a 23 a21 a a a a 3-a33

0 0 La31 a3 2  a33 a31 a32 33

(2.21)

and L.

.241/3

. . .o-S-

' ;" - . . - - - - - . - - - : . - . " %" - , - . . , - . - -. . . ' " . ." . . - i . - . - -



b b b 1 0 0 b--b.'-a

[ 11  b12  b13 11 0 b 1  b12  b13  ~121

b b b 0 1 -0 b b b---a (2.22

b21  b22  b23 1 0 - b21  b22  b23- 22  (.2

[b31  b 3 2  b 3  L0 0 1i b 31  b 32  b 33 ab 32 j

It is clear that elementary subtraction matrices are unimodular matrices

since their determinant Is 1 and therefore the product of elementary

subtraction matrices is also a unimodular matrix.

Smith's normal form: Any matrix which contains a diagonal sub-

matrix with non-zero diagonal elements and whose other elements are all

zeros is in Smith's normal form as shown below

. I

0 . . .

o d 0 .. .0

i2

r
- - -- ---- (2.23)

* * I

0 . I . . .

0 . . 0

with d 1  d 2 4d 3 ... d

Procedure for the decomposition

Even though the procedure is applicable to any real matrices. It

will be restricted to square Integer matrices, since we are interested

In decomposing periodicity matrices. The goal of our decomposition u-

to associate an m x m matrix N with an m x m diagonal matrix D in such

e-e-iqq

. . . . . . . . . . . .. . . . . -. *-

"" -St.t...- - - - - - - - - .. ; ..t



a way that

-- o

U 'N •V WD , (2.24)

I--u -m -"mXU -' (m

where U and V are regular unmodular matrices.

The procedure will be illustrated with an example with

3 1 21
1 2 0 (2.25)

I0 1

Step 1:

Move the smallest non-zero element in absolute value in N to the

I- t row and I- -t colunm with proper permutation matrices and let us denote

it as d . For N given above let us take 1 in position (2,1) as di and

move it to the position (1,1) in such a way that

B 0 1 B 23 1 2 (2.26)

0 0 10 1 1 0

--21 P .N .

-21
Step 2:

Construct proper subtra~ttIon matrices, U1 and Vl, to replace the

th(i,l) t  element of the matrix from step I with ri,1 for I - 2,3,....m and

* . ththe (1,J) element of the matrix with rlj for J - R,...,m where the

remainders ri,1 and r1,j are defined by

;. -

@g- ....... .._ . .. . .. .. . . ....... .. . ... ... .. .. . ... . .. . . . . . .. . . . . . --
,'_'. ,'.- ', ,,,' - ' .' ' " . '- - . . - -_: . ' . . ' _ , - ,- . . ._. .. -" ___ ._ - , . . . . . .•.. .- .. .. - ,:
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a 31jd

a~ 11 Ld + r1

where a ijdenote the element of the new matrix and a jare integer num-

bets. This can be achieved by postuaultiplications with subtraction

matrices V L,9:1 and premultiplications with subtraction matrices

U If the remainders rl and r11 are all zero, step 2 is comn-

pleted. If not, step 1 and 2 should be repeated with the new matrix

until the remainders become zero. For the given example, we can

determine U1 and V1 as follows:

1 0F0 1  -2 01
-3 1 and V 0 1 0 (2.27)

0l 0 1L 0  0 i1

By prernultiplying 12- with U, we obtain

1 0 0 1 2 0 El [2 0L[i?
(2.28)

If we postmultiply this with V1 we get
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1 2 0 -2 0, -
-0 1  JLO- 0 1 - 1 1

(2.29)

Since we have all the remainders equal to zero, step 2 is completed.

Step 3:

Upon the completion of step 2, the resulting matrix is In the form

as shown below:

0
H00

* a r(2.30)

0 -l---m-

0

To complete the decomposition, repeat step 1 and step 2 for the sub-

matrix " and 2 " . • and so on until a diagonal matrix is obtained.

Let us proceed with the given example. If we consider the righthand

side of Eq. (2.29), it is necessary to permute the matrix so that the

smallest nor-zero element of the submatrix in absolute value could be

placed in the position (2,2). This can be achieved by premultiplication

with the permutation matrix P32 such that

1 0 1 0 01

t32 ((UjP 21 1)) V) " 0 1-0 "2

0 1 0 0 1'1

-I97
'. .. ,.

. . .. . . . . . . . . . . . . . . . . . ...

S. C . . . .. .. _-::i:'-.. ....... ......."-- .-" -".-, -'. .."- .. '- . ".":<:-:: .::-::-:; :: 2.:i:
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Thenaccrdig toste 2.subtraction matrices U2 and shudb

1 : 0 and V 2{ 1 4] (2.32)

-0 5 ij 0 0 1

* By pre~ultiplication with E2 and Lostmultiplication with V,O we get

-2 -3 -1vi

0 1 0 1 0 1 1 (2.3)

-0 0 7 -0 0 0 0 7

(234

The lef.. . . . . . . . . . . . . . .. . 34). . . . . . . . . . . . . . . . . . . . . . . ..y tha
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(!2 ( 32 M(_ ( 21 " )) !P ) 2  - ! 132 U1  "-21
)  - (Y- 12)

U U .N *V (2.35)

with U U2  P37 U1  P21  and V - V1 V 2 . Then

= j°2 -3 -1 -21 i! ZY
U [l oI ] 1 o 0 0] F 1 0 -,, 0 -1 "

-I 0 0-3

R2 P-32 -1 21 (2.36)

and

1 -2 0] 0 0] [1 -2 2]--

V I -2 ] 0 1 _ I (2.37)

And finally we have 
V2

U -AV - 0 0  1 1 2 0 0 1

1.-3 L 0 0 1.

0 1 00] D (2.38)

................ ,..-..°....

. 0 7.

-1q9:;
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CHAPTERt III

a GEMEMAIZATION PROCEDURE

In the previous chapter, some basic background was introduced

which might be necessary to follow the generalization procedure for zhe

circular convolution and O~FT algorithms. Based on this, the generaliza-

tion of circular convolution algorithms will be discussed In section

3.1 below and the generalization of DFT algorithms will be discussed

in section 3.2. It will be seen that the decomposition of the -, -.

periodicity matrix plays a key role In both sections.

1.1 Generalization of Circular Convolution Algorithms

In the multidimensional case, the general form of the circular

convolution y of sequence x and h can be represented as

y(n) x (mn)h ((r. --. (3.1)

or alternatively

y(n) a x(. "h(-) 9 (3.2)

where X denotes the periodicity matrix when h or x are periodically

extended, I deootes the set of samples in one pt~riod. and ()) denotes

the modulo Noperation. if the sequences x and h have the size

....................................................................................

...............................................................
........................................................
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N - N XN x... .N and the periodicity matrix ?Is di..gonal such that

N4 0. .0

0 N2

N- . 0 0

then Eq. (3.1) can be written in the following form:

N1-I N,-l N -I--

y(nl~n ......nd X (m ..

lb m0 m2_0

- i)X.. (n 2  2) 2~' . . . .(n d md))'4 d 33

for ni 0.1,... .N 1 1  1,2,....,d.

It is straightforward to evaluate Eq. (3.3) by using any proper

algorithms for one-dimensional circular convolutions. For example,

In the two-dimensional case. Eq. (3.3) becones

y(n1.m 2) - (m.1 , 2 )h(((n1  M m1)),. ,((n 2 - *2))'4(34

Equation (3.4) can be computed as a circular convolution of length N1 in

which each scalar multiplication is replaceJ by a convolution of length

N 2. So if M1 is the nwnber of multiplications required to compute a

- 00,



convslution of length N. Eq. (34) can also be evaluated w--th .41

multiplications. Similarly Eq. (3.3) can also be computed with

'4-M2 ... Md multiplications.

But if the periodicity matrix N is not diagonal. the one-

dimensional algorithms cannot be applied directly. To apply these

algorithms directly some modification is necessary.

3.1.1 General Approach

There may be many ways to achieve this. but one way to be dis-Ls-

sed is to change the general form of equation (Eq. (3.1)) to the form of

Eq. (3.3). Then It can be treated in the sane way as for Eq. (3.4).

This modification technique sterrs from the decomposition of the periodic-

ity matrix .1. As will be seen later in this :hapter. it is quite general.

First let 'is corsider the sim-ple two-dimensional sequence in

Figure 3.1. In Figure 3.1. the region of support (or the fundamental

period, shaded region) is periodically extended according to the periodic-

ity matrix

1.;based on the axes n 1 and n 2*
But this sequence may also be viewed as rectangularly periodic

based on the new axzs n1 and n ' with a diagonal perindirity matrix

given by

... ... .. ... .. .. .. ... . . .



Figure 3.1. A Hexagonally Pzriodic Sequence. Which is Rectangularly

Periodic on n1 and n,.

aim
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Thus after mapping each point in the old coordinates (n1 ,n2) to the new

coordinates (nl,n;), we can have the circular convolution form of Eq.

(3.3). But the new coordinate system on which the sequence becomes ..

rectangularly periodic is not unique and in general it is tedious to

find these coordinate systems by ad hoc means. One general method is

to systematically decompose the periodicity matrix 4.

As was shown in the previous chapter, any square matrix A can be

associated with a diagonal matrix D in such a manner that L

U A V D D , (3.5)

where U and V are regular unimodular matrices. If a periodicity matrix

N is substituted for A in Eq. (3.5), we have

UN v . (3.6)

Let us consider N -V first. N V can be viewed as another representation

of the periodicity matrix N.

This can be illustrated as follows. The column vectors of N

represent the directions of periodicity. Since post-multiplication byV

gives a new matrix whose column vectors are linear combinations of the

column vectors of N, and furthermore since V Is a unimodular matrix.

periodic extensions according to N and N .V are equivalent and - ..

• .- 2- Q-:• o • o • o - .o . .% . - .- .% " .• . .
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det(•V) - det(N). Hence. if we denote N -V - H, H is another,%

representation of the periodicity natrix N, and we have

U • M . (3.7)

From Eq. (3.7), if we consider U as a transfer matrix which maps each

point of the sequence, then the column vectors of U- 1 form the new

coordinate system on which the sequence is rectangularly periodic with

the diagonal periodicity matrix D. It can be verified as follows.

Let form the i - h coordinate of the new coordinates and ei the

th th
i- coordinate of the original coordinates whose i entry is 1, and 0

elsewhere. Then

i i
th -1 th

also linearly independent and the i- column vector of U forms the "

coordinate of the new coordinates. Then any vector x in the space can be -. :

represented as a weighted sum of e 's or Z 's such that
L -L

x - aiei , b , (3.10)

-2-
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where the ales and bes are constants which denote the indices based on

the original coordin-ites and the new coordinates, respectively. If we

premulciply xin Eq. (3.10) by the transfer matrix U, we have

- bi(UZ1 ) (3.11)

It is easily seen from Eq.. (3.11) that every point on the original

coordinate system can be mapped onto the new coordinate system by pre-

multiplying it by the matrix U.

Now let us consider the general form of the multidimensional

circular convolution (Eq. (3.2))

y(n) = x((n- ))h(k) n C (3.2)

Equation (3.2) can be changed into the n~ew coordinate system as follows.

y(((Un))) x(((Un - J~)h(Uki), nC IN~ (3.12)

Let us assign new variables for Un and Uk such that

Mn-Un and g Uk.
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Then Eq. (3.12) becomes

y(_) - x(((m- _))D)h(.). , (3.13)

.4D

where ID denote the set of samples in one period corresponding to the new

periodicity matrix D. Clearly Eq. (3.13) Is in the form of a circular

convolution for a rectangtrlarly periodically extended sequence. Thus

the output sequence can be obtained in the following manr.er: 1. Obtain

the transfer matrix U by decomposing the original periodicity matrix N.

2. Map every point in one period onto the new coordinates by multiplying

the transfer matrix U. 3. Compute the circular convolution in the same

way as for the rectangular case. 4. Map the result back onto the original

coordinates. Tn the following. a simple example will be presented in

order to illustrate the procedure.

3.1.2 Example

Let us consider Figure 3.2. This figure shows the periodic exten-

sion of the shaded region (fundamental period) according 
to the periodic- ,.

ity matrix

L0 2

If we decompoie N with the procedure illustrated in the previous chapter,

we get

.............

- ...-.-.-. .~
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Figure 3.2. A Periodic Tvo-Dimnsional Sequence.

-t

'p
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- -4

U N V D

Since the rectangular periodicity matrix was definec to have

positive diagonal elements, let us Postmultiply by [ Jon both
sides. Then

_ NVD

As entone ealie NVis just another representation of the periodic-
Asmetondealer.

1 0

2~= 4]

To find the new coordinates, let us take the inverse of U3.

U I

Thus we have (1,2) as the new n corint whic is denoted as n1 and

(0.1) as the new n2 coordinate which happens to be the same as the

. . . . . .. . . .. . . . . .
- -. *..-. An,**-
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original coordinate. If we examine Figure 3.2. the periodically extended

version Is rectangularly periodic on the new coordinates (n n) with the
1 2.

periodicity matrix

Now let

andL

ID {(0,0).(0,l1),(0,2),(0,3)j

Then each point in 'Nis mapped into the new coorJinates as follows.

U IN

(010) (0,0)

F' oj (0,1)(0.*1) -

2 (1,0) = (,2

If we take the modulo D operation for each vector on the right side, we

have

V,.

.... ... .. . . . .



((0,0)) D 0 0)

((.) (0,1)

=(0.2)

-(0,3)

Thus each point in 'Nis mapped as follows

IN D

(0.0) * (0.0)

401 - -l

(1,0) -~(0.2)

(1)* (0,3)

After the napping is done. the procedure for the evaluation of the

circular convolution is straightforward. It should be noted that the

output sequence has to be mapped back into the original coordinate -

sy,,:.2m using the reverse napping.

3.2 General Approach to the Evaluation of the

Multidimensional DFT

Any H-dimensional sequence i(n) with the periodicity matrix 14 can

be exactly represented by a set of Fourier series coefficients which will

be denoted by ikc) where
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X (-n) iX(k)exp[Jk '(2-. 1 )n(.14

i~)- (n)exp(-j'(21rN-1 )nI (3.15)

ne IN

I The sequence of coefficients X(k) Is periodic with the periodicity matrix

N' with a prime C') indicating the operation of vector or matrix trans-

position. The regions l~and Jdenote the set of samples in one period

of k(n) and X).respectively. If x(n) and X(k) are defined to be

sequences with finite support on I4 and J. rsetvlte

i(n) - x(n + Nq) (3.16)

1 q

X(k) = X(k + N'r) (3.17)

j where q and r vary over all H-dimensional integer vectors and

0 * otherwise

X(k) -{ terse(3.19)

Thus the relationship between x(n) and X(k) can be obtained:



1() x(n)exp[-Jk'(2TN-)!I). kt C£, (3.20)

x n) 1X(k)expfjk (2ri'N )n). E 1, (3.21)

In the remainder of the section. we shall consider a general

approach to the computation of the multidimensional DFT. The object of

the approach Is not In modifying a certain DFT-algorithn. but in making

it possible to evaluate the DFT with any periodicity matrix by using

proper existing algorithms.

3.2.1 The General Approach

The general form of the DFT for a multidimensional sequence can

be represented as in Eq. (3.20). When the periodicity matrix N is

diagonal, which is the most commonly encountered case. Eq. (3.20) can be

expressed as

X(k 1 ,k 2 .. I) Nl l x(n1 '...' .,)exp(-j21ckn) (3.22)

n1 0 n 1 0

exp(-j2k n)

with ki = 0,1...N ,N 1l. for I 1,2,.. .,m.

It Is straightforward to compute the DFT when it is In the form of%

Eq. (3.22) by using a row-colunm decorposition with a one-dimensional DFT

algorithm such as the FFT (81 or WFTA 131.
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If the periodicity matrix N Is not diagonal, it becomes cumbersome

to compute the DFT by applying the existing DFT algorithms. The method

Ito be Introduced stem from the decomposition of the periodicity matrix N

:s for the case for the general form of circular convolutions and obtains

a DFT of the form of Eq. (3.22) from Eq. (3.21). We know that N can be

decomposed as

U NV D (3.6)

where U and V are regular unimodular matrices and D is a diagonal matrix.

if we take the inverse of N~, we have

V D U.

By substituting N into Eq. (3.21). we have p.

X(k) - x(n)exp(-JS' (2,V D- DOn

a~cIN

- x(n)exp(-J((k'))(2D )(Un)) ) (.3

ne IN

F for k E JN

*At this stage it is necessary to show that ((Un)) and (')

)D /
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give distinct vectors for n c and k c J

In the previous sub-section, i(n) and i(k) are defined to be the

periodically extended versions of x(n) and X(k) with the periodicity

matrices N and N', respectively. However, they can also be considered

to be rectangularly periodic with the periodicity matrix D in the new

coordinates which are composed of the column vectors of U_ for i(n) and

-the column vectors of (V for X(k). The former was proven in~ the

previous section; the latter can be proven similarly. If Eq. (3.6) is

transposed, we have

V' N' U' -D' -D (3.24)

Thus the new coordinates for X(k) can be obtained from the column vectors

of (V) on which X (k) in rectangularly periodic. This medns that

((n)and ((V k)Dfor n c IN and k c Jwatch every point in Iand

iD respectively, where Iand 3denote the set of samples in one period

of x(n) and X(k) corresponding to the new periodicity matrix D.

With some changes in variables in Eq. (3.23) such that

( -'X) I' (3.25.a)

- m ,) (3.25.b)

Eq. (3.23) becomes

7, . . . . .

. . . . . . . --7
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This is in the form of a DFT of a rectangularly periodic sequence. Thus

Eq. (3.26) can be computed as follows; 1. Map every .,oint of x(n) into

the new coordinates by premultiplying the cransfer matrix U. 2. Compute

the DFT in the same manner as for a rectangularly perivdic sequence.

3. Since the result is on the new coordinates. map the result back inte

the original coordinates to obtain X(k) by premultiplying (V' -4

In the followig subsection, the evaluation of a two-dimensional

DFT will be introduced to help illustrate the whole procedure.

3.2.2 ExamplJe

Let us consider rigure 3.2. The~ periodicity .natrix: of the

sequince '.s

2 1'0 A2
And the regions I, -and J~ can be chosen such that

We know from ;.- previous section that

[0 1 1 4 .[1 ] and D [1 0]*

............ 0 .4.

. . PAO
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Thus IDand JDcan be chosen such that

ID - (O,).(0.l),(0,2),(o,3)) J-

Then every point in 1.is mapped into I~ as follows.

U

.'(0,0) (010)

1i 0 (0.1) (,)-

I "-2 .1 (1.0) (,2

If we take the modulo D operation for each vector in the right side, we

have

ID

((0.0)) - (0,0)

((0,)) (0,1)
D

Thus each point in 1.is mapped such that

MIN

e-1-



INl D

(0.0) .. (0.0) * U

(1.0) - (0.3)

The same procedure was done in the pre,, ious section. This mapping can

be seen clearly from Figure 3.3.a. After the mapping is done, the DFT

in the new coordinates, which is composed of the colun vector of (-)

can be written as

]~X~k) " x(2)xP- (, rZ
EELD

This, in turn, becomes

X(z 1 ,z) - X(m,m,)exp (- .. (4 ZlmI +z

m1-0 02.0

- x(0,,m )exp _jaz

fo 0, and Z2 0.1,.. ..

Ths zi,2  can be computed by using proper one-dimensional DFT

algorithms such as FFT or WFIA. It should be noticed that the indices of

X(t1 ,z2) are based on the new coordinates (Rl,1 2) which are shown In

Figure 3.3.b. Hence, the result shoulc. be mapped back Into the original

/L

..............................................................
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coodintes k1 and k. This can be done by premultiplying (XVI.2  by

(v)ias follows.

D t

(0.0) (0.0)

[2 -1] (01 (10

1 0(0,2) (-2.0)

(0.3) (-3.0)

if we take the modulo N' operation for each term on the right side, we

have

N

=(0,0)

(0.1)

((3I0)~4 * (1,0)

Thus each point in J D is mapped into J N in such a manner that

(0,0) * (0,0)

(0.1) (1)

(0,2) -* (0,1)

(OM) (1,0)

This mapping is the last step in the procedure for obtaining the OFT of

sequences with non-diagonal periodicity matrices.
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CHAPTER IV

COMa~I)rER PROGRAIO(INC THE WTA

The procedures introduced in the previous chapter are very general

methods for computing circular convolutions and DFTs for multidimensional -

sequences. Based on the procedure. a computer program has been written

using the WFTA to evaluate general multidimensional DFTs. Since the

procedure for the evaluation of a multidimensional circular convolution

is very similar to the one for a DFT, the discussion will be confined to

programmiing issues associated with the WFTA.

4.1 Winograd Fourier Transform Algorithm (WFTA)

With the WFTA, a composite DFT of size N, where N is the product

of d relatively prime factors N1,N .. Nd is mapped Into a multi-

dimensional DFT of size N xN X... xNd using the

d
n 01 (/N )n modulo N, n'- 0

iini Oa 0,..... -

d

k MI (IJ)ki modulo N, k - 0,19,... ,N-1

i-I a 0,l,...,N i-1

Index mapping schema introduced by Cood [11). This multidimensional DFT

to then expressed In the form of a nesting of d different one-dimensional

small DY?.. For example, for a DFT of size N1 x N, the two-dimensional

1 2

.

.. . . . . . . . .. ..2.. . . . . . . . . . . .
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* DFT can be expressed as

* . N1  N(2-1

X(k1 ,k) . ~ x(nl.n )exp L-1 r nlkl) exp (-j ~ nk) (4.1)

I 2I 
n

After the termis are rearranged, Eq. (4.1) becomes

X(k11k) I x(n1.n )exp(j i Klk )exp( j LT n kc~ (4.2)L

in . 0  n n1 .02

If we denote

; =klj x(n1.n )exp j n nki) (4.3)

n0-

Then Eq. (4.2) can be expressed as

N 2-1

2

Equation (4.4) is a OFT of length N 2 where each multiplication step

represents a OT of length N in which each multiplication by

11
exp (-j LIT2

ex(j I f~k ) ex (-j Lr n k2  In other words, Eq. (4.4) Is a OFT of
N 1 1 1 N222

length N 1 nested In a OFT of length N 2. This procedure can be easily .A
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extended to higher dimensions. Thus if N is defined to be the total

number of multiplications necessary in evaluating the DFT of size N and

M1 for the DFT of size Nit

d
M rj 

"

4.2. Computer Program

The whole program is divided Into two phases: a generation phase

and an execution phase (Figure 4.1). In the generation phase, some

mapping vectors (mapping vectors 1, 2, and 3) and coefficients are

computed which are used in the execution phase (Figure 4.2). The

decomposition of the periodicity matrix also takes place at this time. "

The execution phase is composed of five parts, as shown In Figure 4.2.a.

Precomputed elements from the generation phase are used at this time.

Mapping vector 1 is used in step 1 to map the points in I into the new

coordinates so that the general form of the DFT can be changed into the

form of a DRT for a rectangularly periodic sequence, and mapping vector

3 is used to map the result from step 4 back into the original coordinates

to give the final result. For a given rectangularly periodic sequence,

If the periodicity matrix has composite diagonal elements, computational

savings result by mapping this sequence into a higher dimension, which

takes place in step 2 using the precoputed mapping vector 2. Mapping

vector 2 is also employed in step 4 in performing the inverse of this

mapping.

7

. ..... _



0

0. m r-

galw

uoto

-4C 4 c

toccc '.
0 0 0

'4.4 -4 CA
CL m0.0 0

0.U5.C



31; 48

.a'I

II
0. 0

*t CL 41 14

It 4. 4

P41
"044

00*

c -44

C0 0.

00 u



• "..-

/p

49 ,-

A more detailed schematic diagram for step 3 is shown in Figure

4.2.b. Step 3 is divided into three parts: input addition, multiplica-

tion, and output addition. The input addition part gets N input data

points and produces M output data points which are fed to the multiplica-

tion part, where N and M represent the total number of points in the

sequence and the total number of multiplications needed, respectively.

The data are multiplied by precomputed coefficients, then the results

are added together.

If we are only concerned with rectangularly periodic sequences,

there are some procedures which can be omitted; the decomposition and

the computation of the mapping vectors 1 and 3 in the generation phase,

and steps 1 and 5 in the execution phas,. It can be seen from Figure

4.2.a that steps 2, 3, and 4 represent the evaluation of the DFTs for

rectangularly periodic sequences. Thus in the rectangular case, N real

memory locations are required for the mapping vector, while in the

general case, it appears that 3N real memory locations are required.

However, mapping vectors I and 2 can be combined to produce a new

mapping vector which, in turn, results in combining steps I and 2 - -

into one processor. Similarly, mapping vectors 2 and 3 can be combined

which, in turn, results in combining steps 4 and 5 (Figure 4.2). There-

fore, with a little more additional computation in the generatio.. nhase,

real memory locations for the mapping vectors can be reduced from 3N

to 2N. Furthermore, by combining steps 1 and 2, and 4 and 5, the execu-

tion time and the program length of the execution phase can be reduced to

levels which are comparable to the rectangular case. In Figure 4.3, map-

ping vectors 1 and 3' result from the combining of the mapping vectors

\.



50N o

-- U - --.-

•4 C4 en. "

0 0 ,.

I ~~a " /,lA toI Ica. 't-- - 0 9 "5

oo. 4.% 07-"

I 0 .4•. . 0

14. a).41

* 0 00 00 o
. 01 C6 c .

.4c q-- .:.

> o-r-
844

.. 4

V.-

48O

CLC

41 c In48 4

.4 0
.4. -4 do

000

C4 C

v8. to0

r0 'A

z 41.4 9



__ .6_.

51

1 and 2, and 2 and 3 in Figure 4.1. and pro-essor 1 and 3' are the

combining of steps 1 and 2. and 4 and 5. ispectively. in Figure 4.2.a.

it can be concluded from the above verification that the cost

for the generalization, compared to the rectangular case. Is the follow-

ing.

1. Ak increase in the program length and the execution time of -
Ik

the generation phase due to the decomposition procedure and

the computation of mapping vectors 1, 3. 1' and 3'.

2. N more real memoxy locations for the mapping vectors.

As shown in Figures 4.1 and 4.3, the generation phase is merely L

a preparation step which computes the data necessary for the execution

phase and stores them in the memory for later use. Thus the major cost

for the generalization is N more real memory locations. For reference,

the execution times of the program are listed in Table 4.1 for various I

periodicity matrices with different sizes. As expected, there is little

difference in execution time of the execution step between the sequences

with non-diagonal periodicity matrices and their diagonally periodic

counterpart, while slight differences exist for the generation step.

A ..;

4.-?i

I . So*5

. " .

Ib'~..,.',.,,.. ,.._:...___.-.--- -'-"...".-" ...................... . ...
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Table 4.1. (a) Generation Tim and Execution Time for Two-
Dimensional Hexagonally Periodic Sequence.

(b; Generation Tim and Execution Time for Two-
Dimensional Rectangularly Periodic Counterparts.

*Periodicity Matrix No. of Points Generation Time Execution Time
()(N) (sec) (see)

[: 13 0.091 0.043

[ :112 0.113 0.101

F8 41L J48 0.201 0.353

192 0.545 1.344
L8 l6

32 16F 3]768 2.082 5.630

----------------- --------- -------------------------------------------

[ j3 0.57 0.40

r2
II12 0.070 0.098

~. 0  6J

48 0.122 0.348

\0 
210



Table 4.1. (O'ntizzued)

Periodicity M(atrix hi. of Points Generation Time Execution Time
(N)(N)(sec) (sec)

(b) (continued)

~: 2]192 0.316 1.336

768 1.226 3.612

4:]

301



CHAPTER V

CONCLUSIONS

It has been shown in this paper that any multidimensional sequence

with arbitrary periodicity matrices can be changed Into rectangularly

periodic sequences in a systematic manner by decomposing the periodicity

matrices, and this method can be used with proper existing algorithms for

rectangularly periodic sequences to evaluate the general multidimensional

circular convolutions and DFTs. The computer program for the evaluation

of IFTs using this method appears to be similar in its execution time to

the one for the rectangular case. A listing of the programs is given in

the Appendix along with some important flowcharts.

The method Introduced in this paper converts a general multi-

dimensional periodic sequence into a rectangularly periodic sequence,

then applies a one-dimensional algorithm which depends on the diagonalized

version of the periodicity matrix. It is. however, hard to decide from

the original periodicity matrix. without decomposing the periodicity

matrix, which algorithm fits best. For example. in evaluating the DFTs

for a two-dimensional periodic sequence whose fundamental period is

composed of 12 points, the possible two-dimensional rectangularly periodic

counterparts would be (2 x 6) and (3 x 4), each of which leads co dif-

ferent algorithms. it becomes even more complicated for higher dimensions

and larger sizes. Hence, It would be very convenient if a simple method

is found to predict the best rectangularly periodic counterpart.
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In some algorithms such as the WFTA, a on*-dimensional sequence

Is mapped Into a higher dimension to give better efficiency when the size

is the product of relatively prime numbers. This Idea may be directly

applied to the multiJimensional case. For example, the periodicity

matrices [4 21 and [20 0 can be factored into relatively prime

matrices such that

S 2]- [2 0 F I

and - -

F0 101 [5 01 r2 0 [2 1]

L0 201 0 LO 2 L 2

For such sequences, if a direct multidimensional mapping scheme

is developed, such as is used in the one-dimensional case, possibly more

efficient algorithms can be found. For this particular example given

above, the decomposition procedure can be omitted if a short DFT algorithm

is developed for [ 1 , which can be, I assume, a slight modification

of a 3-point DFT algorithm. The development of efficient short DFT

algorithms and the generalization of the WFTA and the prime factor

algorithm are suggestions for further research.

. . =

-..- - .-. -.-.. - . - -
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APPENDIX

PROCRAM LIST AND FLOWCHARTS

said&94



CA

C k THIS PROGRAM IS PROVIDED TO COMPUTE THE DFTS OR THE IDFTS *

C * (INVERSE DFTS) FOR MULTI DIMENSIONAL SE.QUENCES WITH ANY PERIO-
C * DICAL EXTEN4SION. THIS PROGRAM IS DIVIDED INTO TWO PHASES:THE
C * GENERATION PHASE AND THE EXECUTION PHASE. IN. THE GENERATION
C * PHASE, PERIODICITY MATRIX IS DECOMPOSED AND EVERY ELEMENT IS
C k COMPUTED WHICH IS NECESSARY FOR REORDERING THE INPUT AND OUTPUT*
C* SEQUENCES. AND THE COEFFICIENTS ARE ALSO COMPUTED IN4 THIS PHASE.*

C * IN THE EXECUTION PHASE DFT OR IOFT IS COMPUTED. THE ALGORITHM
C *USED IN THIS PHASE IS STRICTLY BASED ON "WFTA". THE DETAILED
C * DESCRIPTION OF EACH ROUTINE WILL BE SUBMITTED IN EACH SUBROUTINE
C * AND IN4 THE PROGRAM IF NECESSARY. THE DESCRIPTION OF E4iCH ARRAY
C * AND VARIABLE IS AS FOLLOWED.
CA
C A A; PERIODICITY MATRIXA
C A U; NEW BASE FOR INPUT DATA
C * V; NEW BASE FOR OUTPUT DATAA
C A N; DIAGONAL ELEMENT OF DIAGONALIZED VERSION OF A
C A OLDN; REGION OF SUPPORT
C * F; FACTORS TO BE USED FOR SHORT DFTA
C A NF;RELATIVELY PRIM4E FACTORS OF NA
C A N4; NO.OF MULTI PLICATIONS NEEDED FOR DFT OF SIZE FA
C A FX11M; NO.OF FACTORS OF EACH N4
C A P; PERMUJTATION MATRIXA
C A NUN; NO.OF POINTSA
C *  M; DIMENSION
C * IRVECIO INPUT REORDERING VECTOR A

C * ORVECID OUTPUT REORDERING VECTOR A

C * REVEC ; TRANSIENT STORAGE FOR IRVECI ORVECI A

C * GENEL N'JMBER OF MULTIPLICATIONS A

C * INV; IF INCJ.O, CMPUTE DFTAA
C * IF 1KVU I COMPUTE INVERSE DFT A

CA

C

CA
C A THIS IS THE EXECUTION PHASE: A

C A DECOMPOSE THE PERIODICITY MATRIX "A" SUCH THAT "UAV-D". ANDA
C A EVALUATE THE RELATIVELY PRIME FACTORSIF ANY, OF EACH DIAGONAL A

C * ELEMENT OF "D". THEN EVALUATE THE PERMUTATION MATRIX BY WHICHA
C A THE INPUT SEQUENCE IS ORDERED PROPERLY BY USING GOOD'S METHOD.
C A COMPUTE THE COEFFICIENTSTOO.A
C A

C

~23Y

........................ ..................... • " .
:

C • U NE BASEFOR NPUT ATA.

.;NWBS .O OU'T AA* .'
C 4- IGNLEE N F IGNLZDVRINO
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PARAMETER DH-2,Ntfl43,NVO
INTEGER A(DM,D4l),L(DM,4DM).V(DM4.DNt),N(5),OLD%'(5), F(9),mmN
INTEGER N(16).FNUM,(DH),P(5,1O0),L(9).NF(D4,4).D(9),INV,DM
INTEGER IRVECI( 1000) ,ORVECI( 1000) .REVEC2( 1000)
REAL C1.C2.C3.SI,S2.S3.PI
COMPLEX M(16,18),CMP,CM(1000)
DATA LI9*!I
DATA D/9'I/
DATA F/16,9,8.7.5,4,3.2,1/
DATA NM/1,2,3,4.6,O.9.S.11.0.0,0.0,O,0,18/

C
C

OPEN 7.'DATAI'
READ FREE(7)((A(1,J),J-,DM)I-.1D4)
READ) FREE(7)(OLDS(I).115)
CLOSE 7

C
C
C ASSIGN~ EACH COEFFCIENT A VALUE FOR SH1ORT DFT

C
C

DO 30 1-1,16
D0 30 J-1,18

30 .( ,1- 1 .
P1-ACOS(-1.)

SI-SIN(.'PI/7.)

C1-.O(4.*PI/7.)

C2.COS(4.*P117.)
C3.COS(6.*P117.)

M(3,2)-C(I.,(O.) .P/.)l,.

M(3,3)-C!4PLX(O. .SIN'(2.*PI/3.))

N(4 03 -010.)

M(7,3)-(1. .. S42*I5)S-(.P/.)
M(7.4)-CXFLX((COS2*P/5)13-C.O(. P/.)2.

M(7.3)-Cx4PLX((Cl4.C2-2.*C3)/3. .0.)

. .. . . . . . .
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N(7.4)-CI4PLX(O). (S!-2.*S2-S3)/3.)
M(7,5)aCXPLX((CI-2.*C24C3)/3. ,0.)
M(7.6)-CMU'LX<O. .(S1+S2+2.*S3)/3.)
M(7,7)-CNPLX(O. ,(2.*S1-S2+S3)I3.)
M(7,8)-C'PLX(O. .(SI.S2-S3)/3.)

m(81000(1,.)
M(8.3)-(I..O.)

!4(8,6)-CNPLX(O. ,SIN(PII4.))
14(8.7)-CO. .1.)
M(8,8)-CIPLC(COS(PI/4. ),.0.)

M(16,5).(1.,O.)

M(16,7)-(1..0.)

MC l6.6)-C.4?LX(OSI(PI/4.)) -)

M(16,9)-(0..1.)

M(16.1)( PLX( (S.)

M(16.13)-(O.,1.)

!(16,15).CMPLX(COS(PI/4.),O.)

I-IC16,18)-CMIPLX(COSC3.*Pl/8.) .0.)
C
c
C DECOMPOSE THE PERIODICY MATRIX, AND GET THE MATRICES "U" ."V"SAN4D
C "NTHE DIAGONAL ELEMENTS OF THE DIAGONALIZED VERSION THE

C
C

CALL DECOMP(A,U,VN,DM)
C
C .~

C EVALUATE THE RELATIVELY PRIME FACTORS OF EACH DIAGONAL ELEMENT
C ARRAY "N"(NF), AND THE NUMBER OF FACTORS(FNUM).
c
C

CALL FACTOR(N,F,DMNF ,FN)

. . .. . . . . . .
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C
C
C EVALUATE THE PERMUTATION MATRIX
C
C

CALL IPRMT(N.NF.FNUM,DH.P)

C

C COMPUTE THE MULT1IPLICANTS TO BE USED
C
C

K-1
DO 10 1-l.DH
DO 10 J-IFNUWX(I)

L(K)-NF4(IN(K) i1

K-K+l
10 CONTIN4UE

K-1 L
DO 20 11-1,1)(1)
DO 20 12-1,D(2)
DO 20 13-1,D(3)
DO 20 14-1,D(&)
DO 20 15-1,D(5)
DO 20 16-1 ,D(6)
DO 20 17-1.0(7)
DO 20 18-1,D(8)
DO 20 19-1,D(9)

CH.%PCX(P*M(L(6),16)*X(L(7),17)*MI(L(8) ,18)*M(L(9).19)

K-KeI
20 CONTINUE

MKlL-K-1
C
C
C COMPUTE THE INPUT AND OUTPUT REORDERING VECTORS
C
C

IF(INV.EQ.1)CO TO 40
CALL VECTOR(OLDN,N,U,DN.,PYUM,IRVECIOO,3)
CALL VECTOR(OLDN,N,V,D,P,NUhtORVECI1,,,)
CALL VECTOR(OLDN,N,LJDNP,NUH.REVEC2,0,O,2)
GO TO 41

C
40 CALL VECTOR(OLDN,.N,V.DMP.PNU.IRVEC1,OI,1)

CALL VECTOR(OLDNN,U,DM,P,NUM.ORVECI,1,1,1)
CALL VECTOR(OLDN,N,UDM,P,NUM.REVEC2,0,O,2)

17
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41 DO 50 Iwl,NUM

IRVECI(I )PREVEC2( IRVECIC I))
ORVECI(l)-REVEC2(ORVECI( I))

s0 CON~TINUE
C

OPEN 62 ,"RVECTOIC'
WRITE FREE(62)MUL

WRITE FREE(62)(IRVECl(I),I-I.NUM4)
WRITE FREE(62)(ORVECI(I).I-1,NUM)
WRITE FREE(62)(CM(I),I-1.MUL)
WRITE FREE(62)(L(I),I-1,9)
WRITE FREE(62)(D(I),I-1,9)
WRITE FREE(62)(FUM4(I),l-1 ,NU4)
WRITE FREE(6 2) (."(1) ,I -I,16)
CLOSE 62

C THIS IS THE END OF THE GENERATION PHASE
STOP
END

C

C

CA
C *THIS IS THE EXECUTION PHASE:
C * MAP THE IN;PUT SEQUENCE ON THE NEW COORDINATES ON WHICH THE
C * SEQUENCE IS RECTANGULARLY PERIODIC. AND COMPUTE THE OFT OR
C * THE LOFT. THEN MAP IT BACK ON THE ORIGINAL COORDIATES.
C * INPUT SEQUENCE IS READ ROWWISE.
Ca
C i*********************************

C
PAR.AMETER DM-2,N4-12,INV-O
COMPLEX TS( 1000) .CM4(1000)
INTEGER L(9).D(9).MUL,IRVECI(1000),IORVECI(IOOO),INV
INTEGER FNUM(DM),NM(16)

C
C
C C0MPUTE OFT
C
C

OPEN 62,"DATA"
READ FREE(62)MUL
READ FREE(62)(IRVECl(I),I-.,NUH)

*READ FREE(62)(ORVECI(t),I-1,NUM)
READ FREE(6..)(CM(I),I-1,MUL)
READ FREE(62)(L(l),1-t,9)
READ FREE(62)(D(I),I-1,9)
READ FREE(62)(FNUN(I),I-1,NUM)
READ FREE(62)(NM(I),I1.116)
CLOSE 62
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Iic

C

C READ INPUT DATA IN PROPER ORDER
CI C

OPEN 17,"DFr'
READ FREE(17)(TS(IRVECI(I)),I-,.IUM)
CLOSE 17

C
C
C COMPUTE DFT OR IDFT DEPENDING ON INV
C
C

CALL COMIPUT1E(TS,L,FNUM.,\*1.CMDM.NU.4.DINV)
C
C
C PUT OUTPUT DATA IN PROPER ORDER
C
C

OPEN 11."I1DFTI
WRITE FREE(1i)(TS(ORVECZ(t)),I-lNVUM)
CLOSE 11

C
C

STOP
END

'721



C * THIS SUBROUTINE DECOMPOSES THE MATRIX A IN SUCH A MANNER
C * THAT (UK)(A)(VK)-D. WHERE D IS A DIAGONAL MATRIX.
C. *
C , A(I,J); A MATRIX TO BE DECOMPOSED *
C * UK(I.J); RESULTING PRE.LTIPLICATION MATRIX *
C * UI(IJ); TEMPORARY PREMULTIPLICATION MATRIX
C * VK(I,J); RESULTING POSTMULTIPLICATION MATRIX *
C * VI(IJ); TEMPORARY POSTMULTIPLICATIO. MATRIX *
C * N(I); DIAGONAL ELEMENT OF D (-W(II))
C * P(IJ); ROW PERMUTATION MATRIX *
C *. Q(IJ); COLUMN PERMUTATION MATRIX *
C * W(I,J); GETS A(IJ) AND ENDS UP WITH D(I,J) *
C * U(I.J).V(I.J); TE.4PORARY SUBTRACTION MATRICES .
C. *

C
SUBROUTINE DECO.'P(A,UKVK,.4.M)
INTEGER M.STEP,CHEK
INTEGER A(M,M),W(5,5),P(5.5).q(5.5),U(5,5).().
INTEGER V(5,5),UK(M,M),VK(fl,M),PB(5,5).UI(5,5),VJ(5.5)

C
C
C INITIALIZING STEP
C
C

IF(M.EQ.5)GO TO 60
DO 61 1-,+1,5

61 N(I)-1
60 DO 10 i-1,M

DO 10 J-1,.
10 W(IJ)-A(IJ)

CALL IDENT(UI.M,5)
CALL IDENT(VJH,5)

C
C
C DO THE DECOMPOSITION
C
C

DO 100 1ST-IM-I"
800 CALL IDENT(PB,H,5)

CALL IDENT(P,M.5)
700 STEPO

CHEK.O
C
C
C GET THE SMALLEST NON-ZERO ELEMENT IN ABSOLUTE VALUE IN W(I,J)
C FOR I,J-IST,...,M.
C
C

• iii :." .: ? :.:: ,2.:2. : -:... -. -" ..... ..... ..... . .. . ... . ..:. ;-.'-,.. . . . . . . . . .. . . . . . .... .-.. . . . . .-. .,.-.. .". .".-.. .
"-

. .-.. . ."-.
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CALL SORT(VM,IST.IROW.ICOL,5)
C
C
C mOVE THE SMALLEST TO THE ROW IST AND COLUMN IST. AND GET THE
C CORRESPONDING PERMUTATION MATRICES P AND Q.
C
C

IF(IST.NE.IROW)GO TO 20
CALL IDENT(P,H.5)
GO TO 30

20 CALL TR.ANS(P,H,IST,IROW,5)
CALL MULT(P,PB,M,O,5)

30 IF(IST.NE.ICOL)GO TO 40
CALL IDF.'T(Q,!,5)
GO TO 50

40 CALL TRANS(Q,M,IST,ICOL,5)
50 CALL W-LT(PBW,H,O,5)

CALL %VJL-(W.Q,M,1,5)
C
C
C MAME ALL THE ENTRIFS OF W(I,J) ZEROS FOR JAIST+I.....x. AND
C IIST. AND GET THE CORRESPONDING SUBTRACTION MATRIX V. THEN
C UPDATE W(I,J) AND VJ(IJ).
C
C
900 JCHEK-O

DO 200 JST-IST+I,M
IF(W(IST,JST).EQ.0)GO TO 200

200 CONTINUE
300 IF(JCHEK.EQ.O.AND.CHEK.EQ.1)GO TO 400

IF(STEP.NE.O)GO TO 700
CALL SUBS(VW,M,IST,1,5)
CALL MULT(W,VM.1,5)
CALL MULT(Q.VX ,0,5)
CALL MULT(VJV,M,1,5)
STEP-i
CHEK-1
CO TO 900

C
C
C MAKE ALL THE ENTRIES OF W(I,J) ZEROS FOR I-IST+I,...,M, AND
C J-IST. AND GET THE CORRESPONDING SUBTRACTION MATRIX U. THEN
C UPDATE W(I,J) AND UI(IJ).
C
C
400 STEP-O

CHEK-0

%.

. - . . . . --
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401 ICCEKO
DO 500 KST-IST+I,M
IFOJ(KSTIST).EQ.O);O0 To 500
KCHEK- I
GO TO 600

500 CONTINUE
600 IF(KCHEK.EQ.O.AND.CHEK.EQ. I)GO TO 100

IF(STEP.NE.O)GO TO 800
CALL SUBS(U,W,H4,IST.O,5)
CALL MULT(U,vJ,N,O,5)
CALL MULT(IJ,PB,M,1,5)
CALL HULT(U,UI,M,0 1 5)
STEP-I
CHEK-I
GO TO 401

100 CONTINUE I.
C
C
C KAKE ALL THE DIAGONAL ELEMENTS OF W(I,.J) POSITIVE AND PUT THEM

* IC IN N(I), AND CHANGE VJ(I,J) ACCORDINGLY.
C
C

* DO011 I-I'm

* - IF(W(I,I).GT.O)GO TO 12

DO 13 J-1,H
13 VJ(Ji).-VJ(Ji)

GO TO 11
12 N(I)-V(II)
11 CONTINUE
C

C PUT THE RESUVLTI.NG' UI(IJ) AND VI(1i,J) INTO UKCI,J) AND VK(I,i),

C
C

DO 80 I-1,M
DO 80 J-1,M
UK(I,J)-UI(I,J)
VK(I,J)-VJ(I,J)

s0 CONTINUE
RETURN
END
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C.

C * THIS SUBROUTINE MAKEMS AN IDENTITY M4ATRIX.
C.
C

SUBROUTINE IDENT(P.M.N)

INTEGER P(N.N)
DO 10 Is1,Mt
DO 1O J-1,M
IF(I.EQ.J)CO TO 100
P(I.J)-O
GO TO 10

100 P(IJ)-1
10 CONTINUE

RETURN
END --

C,
C * THIS SUBROUTINE FINDS THE SUBTRACTION MATRIX CORRESPONDING*
C * TrO W(I,J), AND PUTS RESULT IN S(I.J).
C,
C

SUBROUTINE SUBS(S,W,M.1ST,KK,.N)
INTEGER S(N,N),W(N,4)

C

C 11NITIALIZE S(I.J) TO IDENTIfTY MATRIX
C

CALL IDENT(S,M,N)
c

C FIND THE VALUES FOR OTHER ENTRIES OF S(1,3)
C

IF(K.:IE.O)GO TO 100
-DO 20 InIST+I,fl

20 S(I,IST)-IFIX(-WJ(IIST)/IJ(IST,IST))
GO TO 200 k-

100 DO 30 J-IST+I,M

200 RETURN
END
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C *
C * THIS SUBROUTINE FINDS THE LOCATION OF THE SMALLEST NON-ZERO *
C * ELEMENT IN ABSOLUTE VALUE IN MATRIX A(I.J), AI4D PUTS RESULT IN *
C * IROW FOR THE ROW LOCATION AND ICOL FOR THE COLU!N LOCATION. *
C ,

SUBROUTINE SORT(A,M,I T,IROJ,ICOL,N)
INTEGER A(NN)

.iN-10000
DO :0 I-ISTM
DO 10 J-IST,M
IF(IABS(A(I,:)).GT.NIN.OR.A(I,J).EQ.O)cO TO 10
MIN-A(I.J)
IROW-I1
ICOL-J

10 CONT IUE

RETURN
END

\ -

C A
C A THIS SUBROUTINE PERFORMS THE MULTIPLICATION OF TWO 4ATRICES, *
C A A(I,J) AND B(I,J), AND PUT THE RESULT IN A(IJ). A
CA A"1' C~~~ A*A*********A***********A***********A*************

\ SUBROUTINE MULT(A,BH.4,L,N)
• \ INTEGER A(I,N),B(N,N),C(10,10)

DO 10 I-1,M
DO 10 J-1,4
C(I,J)-O

DO 20 KI,M
20 C(I,J)-C(I,J)+A(IK)*B(KJ)
10 CONTINUE

IF(L.NE.O)cO TO 100
DO 30 I-I,M
DO 30 J-I,M

30 B(I,J)-C(I,J)
o TO 200

100 DO 40 I-1,H
DO 40 J-1,M

40 A(I,J)-C(I,J)
200 RETURN

END

. -
°a. •



C.
C * THIS SUBROUTINE FINDS A PEIMUTATION !IATRIX CORRESPONDING
C *IPT A." JPT, AND PUTS THE SESULT IN P(I,J).
C
C *******.***a*****hS**************

SUBROUTINE TRANS(P,N. ZPT.JPT.N4)
INTEGER P(.4,N) \
DO 10 I-1.N
DO 10 J-1,NI
IF(I.NE.J)CO TO 20
P(I.J)-1
GO TO 10

20 P(I.J)-O
to CO.%-.I *X E

PC1p:,JPT)-1
P( EPT,IPT)-O
P(JP%,IPT)-i
P(JPT,JPT)-O
RETURN
END
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C.
C * THIS SUBROUTINE FINDS THE RELATIVELY PRIME FACTORS OF EACH
C* MCI).
C *F(l); FACTORS(2.3.4.5.7,8,9.16)
C *NF(I,J); THE FACTORS OF MCI)
C *FNUM(I); THE NUMBER OF THE FACTORS OF 4(I)

C*

C *********************4***********

SUBROUTINE FACTOR(%I,FPDM.4F.FNUM)
INTEGER D.4
INTEGER A(5),F(9),NF(DM1,4).FUMI(D.1),IFC,M(5)
REAL R.FC

C
C
C IVNTIALIZE A(I) AND %F(IJ)
C
C

DO 40 I-1,D4
40 A(I)-.4(l)

DO 41 I-1.DW1
DO 41 ..-1,4

41 NF(I.J)-l
C
C
C FISD THE FACTORS AND THE NUMBER OF THE FACTORS OF EACH A(I).
C
C

DO 100 I-1,DX

30 DO 200 J-1,9
* IF(A(I).EQ.F(J))GO TO 10

200 CONTINUE
DO 300 K-1.8
RFC-REAL(A( I))/RZAL(F(K))
IFC-A(I)/F(K)
IF(CIFC-RFC).EQ.O.)GO TO 20

300 CONTINUE
20 NF(I.FNIUM(I))-F(K)

A(I)-IFC
FNU.4(I)-FN(I)41
GO TO 30

10 NF(I,NUM(I))-F(J) e
7100 CONTINUE

RETURN
END

.~~~~~I .



C

C THIS SU3ROUTINE COM(PUTES PERM4UTATION VECTORS.
CA
C *P(I,J) ; ARRAY FOR PgRM4UTATIOV VECTORSA

C
SUBROUTINE IPL'IT(N,NF,FNUlM.D4.P)
INTEGER T(4),N(5),NF(DN,4),C(4),?~nU(D'O,DM,P(5.100).NT(4)

C
C
C INITIALIZE PARAMETERS
C
C

DO 100 1-1,4
C(1)-1
T(I)-O

100 CONTINTE
DO 101 1-1,5
DO 101 J-1,100

101 P(I,j)-O
C
C
C COMPUTE PERM'UTATION VECTORS
C

J1-1

-DO 700 Im1,DN4
* .DO 10 K-1.4

10 NT(K)-N(I)/4F(I.K)
DO 20 K-I ,FN.Th(I)

20 C(K)-NF(I,K)
C

DO 300 14-I.C(4)
DO0 400 13-1 ,C(3)
DO 500 12-1,C(2)
DO 600 I1-I,C(I)

61 IF(T(l).LE.N(I))GO TO 60

GO TO 61
60 P(I,J)-T(l)

T(l)-T(I)+NT(l)
JaJ+I

600 CONTINUE
T(lI)-T(2)+NT(2)
T(2)-T(1)

500 CONTINUE
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T(l)-TC3)+NT(3)
T(2)-T( 1)
T(3)-T(1)

400 CONTINE
T( 1)-TCA)+%IT(4)
T(2)-T(l)
T(3)-T(l)

30 T(4)oT( I)
30 CONTINUE

DO 30 K-1,4
30 T(K-0

700 .CONTINUE

RETURN
END

END --

to

~J/101,
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!C
* - C"

C * THIS SUBROUTINE COPUTES THE INPUT AND OUTPUT REORDERING *
C * VECTOR, OR THE INPUT OR THE OUTPUT MAPPING VECTOR DEPENDING *

C ON IST AND 10. *
C * IST-I; .APPING VECTOR *
C * -2 ; REORDERING VECTOR *
C * 10 -0; INPUT MAPPING VECTOR *
C * I ; OUTPUT MAPPING VECTOR *
C * INV.O ; DFT *
C * I; INVERSE DFT * -"

C*
I C ***********~********************************

C

SUBROUTINE VECTOR(ON,NNV,,P, NUM.REVEC,I0,INV,IST)
IN TEGER ON(5),NN(5) ,:(5) .L(5),REVEC(1000),P(5.!00) .U(S,5)
INTEGER T(5.5).V(M,M),IO.INVIST,ICHEK,NI.N2.X3,4.

C
C
C INITIALIZE VARIABLES
C
C

DO 13 1-1,5
IF(I.GT.M)GO TO 12

L(I)-O%(I)
CO TO 13

12 N(I)--
L(I)-1

13 CONTINUE
C

NI-.'(I ) ...
N2-NI*;J(2).r-"

N3.N2*N(3)
N4-N3*N( 4)

C
IF(IST.EQ.I)GO TO 21

C
C
C COMPUTE A REORDERING VECTOR
C
C

K-1
DO 20 Ji-IN(1)
DO 20 J2-1,,N(2)
DO 20 J3-1,14(3)
DO 20 4-1 ,N(4)
DO 20 JS-1,14(5)
J-P(5,J5)*N4 P(4 ,J4)*43+P(3 .J3)*N2+P(2 ,J2)*NII P( i ,J l)+1
REVEC(J)-K

-Z . , :
d -'"" .

Lo"-
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IC-K+1
20 CONTINUE

RETURN
C
C TASOETl NU ARX ,I EDD
C TRNPSTH INUMARX UINEDD
C
21 IHKIO(OIV

DO 14 1K-C1,
DO 14 3-1,5
DOIG..R..TXG TO J9,
IF(ICGHE..OJG.)GO TO 9
I(ICJ)-V(JI)GOT

GO T7O 14

GO TO 14
9 U(1,J)-O
14. C ON T B1E
C

* C
C COMPUTE THE INPUT OR THE OUTPUT 4APPING VCTOR DEPEDN ON1

C
DO1C-,
DO 15 1-1,5
DO(15J-1,

1 CTINUE)-
C5 CNIU

K-
DO-00 51L5
DO 300 14-I ,L(5)
DO 400 14-1,L(4)
DO 500 13-1 ,L(3)
DO 600 12-1 ,L(2)

K-K+1
CALL MODULO(T.N,H)
REVEC(K)-T( I 5)*N4+T(1j,4)*N3+T( 1 *3)'N2+T( 1,2)*NI+T( 1,1 )+I
DO 601 Kl-1,H

601 T(1,Kl).T(1,Ic1)+U(Ki,1)
600 CONTINUE

DO 501 K2-1,M
TCI ,K2)-T(2,K2)+u(K2,2)

501 T(2,K2)-'T(l,K2)
500 CONTINUE

DO 401 K3-1,M
T(1 ,13)-T(3.K3).U(K3,3)

01 T(2 ,13)-T( I K3)
01 T(3,K3)-T(1,K3)

400 CONTINUE

..................................................



DO 301 K4-l*N
TO .K4)-T(4K4)+U(K4I4)
T(2.1C4)-T(1 .14)
T( 3.K4)-T( 1 K.')

301 T(4,K4)-T(!,1(4)
300 CONTINUE

DO 201 K5-l,H4
T( 1,KS)-T(5.K5)4U(ics,S)
T(2,K5)-T( I,K5)
T(3,K5)-T( 1.KS)
T(-&,K5)-T(1 .KS)

201 T(5.K5)-T(1,KS)
200 CONTINUE
C

RETURN

SUBROU'TINE MODULO(TN.DM4)
INTEGER T(S,5),-n(5),D.4
DO too r-1,Dm

20 IF(T(I1).LT.O)CO TO 40
30 IF(T(I1).GE..%(I))Go TO 50

GO TO 100
40 T .)T

GO TO 20

GO TO 30
100 CONTINUE

RETURN
END

~2-.9Z1
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57
75-

C
Ca

C * CunIS SUBROUTINE COMPUTES DFTS OR IDFTS DEPENDING ON INV. *
C * ITS OPERATION IS WITHIN ONE-DIMENSIONAL ARREYS.
C*
C* TS(N) ; ARRAY FOR INPUT AND OUTPUT DATA *
C * ST(N) ; TEMPORARY STORAGE DURING COMPUTATION *
C * CM(N) ; ARRAY FOR COEFFICIENTS
C * S(N) ; ARRAY FOR INPUT AND OUTPUT ADDITIOS
C* INV - O; COMPUTE DFTS
C -1 ; COMPUTE IDFTS *
C* *

C
SUBROUTINE COMPUTE(TS,L..'N'U.N,C.,D.NU.,DI.V)
INTEGER NN(16),F,.'UIM(D.M),L(9),DM,LB(9).D(9),LPITEST
COMPLEX TS(1000) ,CM( 1000) .ST(1000) ,S(20)
INTEGER MI ,M2,K3,MSZ,NUM.I.V
INTEGER LPILP2,LSI.LS2,LI,L2,KI,K2,T,MP1,.MP 2.MSI

C
C
C COMPUTE THE TOTAL NUMBER OF FACTORS
C
C

LP-O
DO 90 I-1,DM
LP-LP+FNUM(I)

90 CONTINIUE

C
C* *

C * THIS ROUTINE PERFORMS INPUT ADDITIONS.
C'
C

DO 91 I-I,LP

K2-1
C
C
C UPDATE PARA.ETERS
C
C

LPI-I.
LP2=I

LS2-I

DO 80 KI.LP
80 LPI-LPI*L(K)

LP2-LPI /L( I)

. . . . . . . . . . . .

. .° ,%



LSl-L?1
LS2oL?2*DC I)
IF(I.EQ.1)GO TO 82
DO 81 K-1.1-1

81 LPI-LPI*D(K)
C
C
C DO INPUT ADDITIONS
C
C
82 DO 92 KI-1,LPI.LSI

K3-K2
DO 93 J-KI,KI+LP2-1
LI-J
DO 94 JI1,L(I)
K-1+2
HI-'.OD( K,2)

IF(MI.EQ.O)CO TO 10
S(J1)-TS( LI)
GO TO 11

10 S(Jl)-ST(LI)
11 LlwLI+LP2
94 CONTINUE
C

CALL CADDO(S,L,I)
C

LO2-K
DO 95 J2-1,D(I)
IF(MI.EQ.O)CO TO 20
ST(L2)-S(J2)
GO TO 21

20 TS(L2)-S(J2)
21 L2wLZ+LP2
95 CONTINUE

K2-K2+!
93 CONTINUE

K2-1C3+LS2
92 CONTINUE
91 CONTINUE
C

C * THIS ROUTINE PERFORMS COMPLEX MULTIPLICATIONS.
Ca

MT-I
DO 40 I-I,L?

40 MT-MT*D(I)
IF(MI.EQ.I)GO TO 50



DO 60 lel.IIT
60 TS(I)-TS(I)*CM(I)

GO TO 71
so DO 70 I-1,KT
70 STC!)-ST(I)C(I)
C

C * TIS ROUTINE PERFOL'IS OUTPUT ADDITIONS.*
C'

71 DO 100 I-JLP
K2-1
ITEST-LP-I+1

C
C
C UPDATE PARAMETERS
C
C

.'P2- I
DO 101 K-1,I

101 tU2wMP2*LCLP-K+2)
MSI.MP2*D( ITEST)
XS2-%tP2*L( ITEST)
MPI-%tP2
DO 102 Kwl,ITEST

102 MPI-.lL'D(K)
C
C
C DO OUTPUT ADDITIONS
C
C

DO 120 K1-1,MPI,MSI
K3-K2

"0O 110 J-K1.K~I+MP2-1
L 1-J
DO0 200 JL-1,D(lTEST)
Ku 1+2
!12-MOD(K,2)
IF(MI.EQ.M2)CO TO 201
SGJl)-TS(LI)
GO TO 202

201 S(Jl)-ST(LI)
202 L1-L14MP2
200 CONTINE
C
C

IF(L(ITEST).EQ.2)CO TO 3001
CALL CADDI(S.INVL,ITEST) 7



78p

C
3001 L2-X2

00 300 J2-1,L(ITEST)
ZF(MI.tQ.m2)co TO 301
ST(L2)-S(j2)
CO TO 302

301 TS(L2)-S(J2)
302 L2-L20P2
300 CONTINUE

K2-K2+1
110 CONTINUE

K2-K3PS2
120 CONTINUE
100 CONTINUE
C
C

IF(%M1.EQ.12)CO TO 401
DO 400 1-1,NuNm

400 TS(I)-ST(I)
401 RETUMX

END



C
Ca

C* THIS SUBROUTINE PERFORMS ADDING OF INPUT DATA FOR SHORT

C * OFTS BEFORE THE MULTIPLICATION STEP.
Ca

SUBROUTINE CADDO( S,L, I)
COMPLEX S(2O),T,T1 ,T2,T3
INTEGER L(9),l
IF(L(I).EQ.1)RETURN
IF(L(I).EQ.2)GO TO 20
IF(L(I).EQ.3)GO TO 30
IF(L(I).EQ.4)GO TO 40
IF(L(I).EQ.5)GO TO 5O
IF(L(I).EQ.7)GO To 70
IF(L(I).EQ.B)GO TO 80
IF(L(I).EQ.16)GO TO 160VCA

CFOT 2-POINT SHORT DFT

20 T-S(1)+S(2)
S(2)-S(l)-S(2)
S(l)-T

C
RETURN

C
CA
C * FOR 3-POINT SHORT DFT
CA
C
30 T-S(2)+S(3)

S(3)-S(2)-S(3)
S(1 )-T.S( 1)
5(2 )-T

C -

RETURN

CA
C * FOR 4-POINT SHORT DFT *
CA
C AA*A*AAAA*AAAAA**A

40 T-S(1)+S(3)
S(3)-S(lI)-S(3)
S(1-T
T-S(2)+S(4)
S(4)-S(2)-S(4)



SM-
I'c

RETUR0

50 ' -'(2 )TS5

K i~(2-sc1+52

SC2)-S(i)-S(2)
SCI)-T

RETURNS(4

50 -SC2)S(5)

TS(4)S()+S()

* S(4-T

C C)-

70 TR-S(2)4.S(7)
5C7)-SC2)-S(7)
SC 2)-Ti
TI-SC 5)45(4)
5(4)-SC 5)-s(4)
S(S)-Ti
TlnSC3)+S(6)

I 5(6)-SC3)-S(6)
j 5(3)-Ti

TI-S(2)4SCS)-S(3)
5(1)-SC 1)tTI -

T2-S( 2 -S( 5)
SC 5)-SC 5)-SC 3)
SC',W5C3)-5C2)
.2)-T1* I 71-5(7)45(4)45(6)

* T3-SC7)-S(4)
S(4)-S(4)-S(6)
S(6)-SC6)-5C7)



S(2)wT
T-S( I)+S(2)
S(2)-S(l)-S(2)
Sc M-T

RETURN
C

* . C.
C * FOR 3-POINT SHORT OFT *

C
so T-S(2).SC5)

SC 5)-SC 2)-SC 5)
S(2)-T
T-S(4)+S(3)
SC 3)-S(4)-S( 3)

T-S(2)+S(4)
SCA)nSC2)-S(4)
S(2 )wT
T-S(3+S(5)
S~l)-S(i)+S(2)
S(6-T

C

C.
C * FOR 7-PoiNr SHORT DFT
C.

70 TI-S(2)+S(7)
S(7)-SC2)-S(7)
SC 2)-Ti
TI-S(5)+S(4) -

5(4)-SC 5)-SCA)
S(S)-TI
TI-SC 3)+S(6)
S(6)-S(3)-S(6)
SC 3)-Ti

S(i)-S(i)+Ti
T2-SC2,-SC5)
SC 5)-SC 5)-SC 3)
S('P)-S(3)-S(2)
q. 2)-Ti
Ti-SC7)+S(4)+SC6)
T3-S(7)-S(4)
SCA)-S(4)-S(6)
S(6)-SC6)-S(7)



81

S(7-T3
S(S)-TI

S(9)-T2

RETURN

CA
C FOR0 8-PO!NT SHORT DFT
CA
C AA***A**A**AAA**A*
so T-S(1)+S(5)

S(S)-S(1)-s(5)
S~i).?
T-S(3)+S(7)
S(7)-S(3)-S(7)
S(3 -T
T-S(2)+S(6)
S(6)-S(2)-S(6)
S 2 )-T
T-S(4)4.S(S)
S(g)-S(4)-S(8)
S(4 -T

* T-S(I)+S(3)
S(3)-s(I)-S(3)

T-5C2)+S(4)L
S(4)-S(2)-S(4)
S(2 )mT 

.*-
T-S( I)+S(2)
S(2)-S(l)-S(2)
SM -T
TnS(6)+S(8)
S(8)-S(6)-S(8)
S(6 )-T

* V C
* RETURN

CA
CA FOR 16-POINT SHORT DFT A
CA

C ****A*A*AAA*A**A*A
160 T-S(1)4.S(9)

S(9).S(x )-S(9)
5(1 -T
T-S(S)+S( 13) 

.S(13)-s(5)-s(13)
SC 5)-T
T-SC3)+S(11)
S(Il)-S(3)-S(II)



62

T-S(7)+S(IS)
S(15)-S(7)-S(15)
S(7)-T
T-S(2)+S( 10)
SC 10)-S(2)-S( 10)
S(2 )-T
T-S(6)+S( 14)
S(14)-S(6)-S(14)
S' 6) aT
T-S(4)+S( 12)
S( 12)-S(4)-S( 12)
S(4)*-T
T-S(8)+S( 16)
SC 16)OS(O)-SC 16)
S(8)-T
T-5(1 )+S(5)
S(S)-S( 1)-S(5)
S(1-? -

T-S(3)+S(7)
S(7)-S(3)-S(7)
5(3-T
T-S(2)+S(6)
S(6)-S(2)-S(6)
Sc 2)-T
T-S(4)+S(8)
S(8)-S(4)-S(8)
S(4)-T
T-S( 1)+S(3)
S(3)5(l)5S(3)
S(1)-T
T-SC 2)+S(4)
SC I.)-S(2 )-S(4)
S(2)-T
T-5C1 )+S(2)
S(2) -SC 1)-SC2)
S(1)-T
T-S(6)+S(8)
SCS)-S(6)-S(8)
SM6-T
T-SC11)+S( 15)
SC15)-SC11)-S(15)
Sc 11)-T
T-S(10)+S(16)
Sc 16)-SC 10)-SC 16)
Sc 10)-?

* ToSCIA)+SC 12)
SC 12 )-SC14)-SC 12)
S(14)-?

* Sc17)-SC 10)+S(14)
* . SC18)-SCI6)+SC12)



83

RETURN
* END

C4

C

C * THIS SUBROUTINE PERFORMS ADDING AFTER THE MULTIPLICATION
C *STEP TO GIVE THE RESULT OF THE DFT. IF INV-1,COMPUTES INVERSE
C *DFT, AND IF INVoO, COMPUTES DFT.
C.

SUBROUTINE CADDI(STINV,L,I)
INTEGER INV,,I.L(9)
COMPLEX T,ST(20) 1T1,T2,T3
IF(L(I).EQ. 1)RETURN
IF(L(I).EQ.3)CO TO 300
IF(L(l).EQ.4)GO TO 400
IF(L(I).EQ.5)GO TO 500
IF(L(I).EQ.7)CO TO 700
IF(L(I).EQ.8)G0 TO 800
IF(L(l).EQ.16)GO TO 600

C * FOR 3-POINT SHORT DFT

300 T-ST(1)+ST(2)
ST(2)-ST(3)+T
ST( 3)-T-ST( 3)

C
C
C IF IT IS FOR INVERSE DFT,
C
C

IF(INV.EQ.1)GO TO 10
T-STC 3)
ST( 3)-ST(2)
ST(2)-T

10 RETURN
C
C.
C * FOR A-POINT SHORT DFT

C*
C ******************

F-fts U%*

16---.,: --



-- 4

400 T-ST(3)+ST(4)
STCA)-ST( 3)-ST(4)
ST(3)ST(2
ST(2)-T

C IF IT IS FOR INVERSE DFT,
c
C

IF(INV.EQ.L)GO TO 40
T-ST(4)
ST(4)-ST(2)
ST(2)-T

C

C

C * FOR 5-POINT SHORT DFT
Ca

500 T-ST(1)+ST(2)
2 ST(2)oT+ST(4)

ST( 4)-T-ST( 4)
ST(5)-ST(S)-ST(6)
ST(6)-ST(6)+ST( 3)

T-STC2)+ST( 5)
* ST( 5)-ST(2)-ST( 5)

rST(2)-T
ST(3)-ST(4).ST(6)
ST(4)-ST(4)-ST(6)

C
C
C IF IT IS FOR INVEPSE DFT,
C
c

IF(INV.EQ.1)GO TO 50
T-ST(5)
ST(5)-ST(2)
ST(2)-T
T-ST(4)
ST(4)-ST(3)
STM3-T

C
50 RETURN



C.
C * FOR 7-POINT SHORT DFT
C.
C
700 T-ST(I)+ST(2)

ST(2 )uT+ST(9)+ST(5)
ST(9)-T-ST(9)-ST( 3)
ST( 5)-T-ST(5)+ST(3)
T-ST(8)-ST(7 )-ST(6)
ST(7)-ST($)+ST(7)+ST(A)-
ST( 4)*ST(g)-ST(4)+ST(6)
ST(3)-ST(9)+T
ST(6)-ST(9)-T
T-ST(2)+ST(7)
ST(7)-ST(2)-ST,(7)
ST(2)-T
T-STC5)+ST(4)
ST(4 )-ST( 5)-ST( 4)
ST(5-T

C IF IT IS FOR INVERSE DFT,
C

IF(IWV.EQ.1)GO To 70
ToSTC7)
ST(7)-ST(2)
ST(2 )-T
TwST(6)
ST(6)-ST(3)
ST(3)T
TwST( 5)
ST(5)-ST(4)
ST(4)-T

c
70 RETURN

C.
* C * FOR 8-POINT SHORT DFT

C*

* Ig80 T-ST(3)+ST(i)
* ST(I.)-ST(3)-ST(4)

ST(3).TJ
TwST(5)+ST(8)
ST(8 )-ST( 5)-ST(8)

ST( 5)aT

*1 .- 21



T-ST(7)+ST(6)
ST(6)-Sr(7)-ST(6)
ST7M-T
T-ST(5)+ST(7)
ST(7 )-ST(5)-ST(7)
ST( S-T
T-ST(8)+ST(6)
ST(6)aST(8)-ST(6)
ST(8)wT
TmST(2)
ST( 2)-ST( 5)
ST(5)-T
T-ST(4)
ST(4)-ST(6)
ST(6)-ST(8)

ST(7)-T
c
c
C IF IT IS FOR INVERSE OFT,
C
C

IF(N''.E.1GOTO 80
T-ST(8)
ST(8)-ST(2)
ST(2)-T
T-ST(7)
ST(7-ST( 3
ST(3)T
T-ST(6)
ST(6)uST(4)
ST(4)mtT

C
s0 RETURN

Ca
C * FOR 16-POINT SHORT OFT
Ca
C ******************

600 T-ST(3)+ST(4)
ST(A)-ST( 3)-ST(4)
ST(3)T
T-ST( 5)+ST( 6)
ST(6)-ST( 5)-STC6)
ST(5)-T
T&ST(7)+ST(8)
ST($)-ST(7)-ST( B)
ST(7)T
ToST( S)+ST( 7)



87

ST(7 )-ST( 5)-ST(7)
ST( 5)-T*
T-ST(6)+ST(S)
STC8)ST( 6-ST( 8)
ST(6-T
ToST(9)+ST( IS)
ST( 15)OST(9)-ST(15)
ST(9)-T
T-ST( 13)+ST( 11)

ST(13)-T
ST( 10)-ST17 )+ST( 10)
ST( 14)-ST( 17)-ST( 14)
ST( 16)-ST( 16)-ST( 18)
ST( 12)-ST( 12)-ST( 18)
T-ST(9)+ST(I0)

ST(9'-?ST( 1O)-ST(9)-ST( 10)
TeST( 15)+ST( 14)

- ST(14)-ST(15)-ST(14)
ST(1S)-T

ST(16)-ST(13)-ST(16)
ST(t3)-T

* T=ST(11)+S-,(12)
ST(12)-ST(11)-ST(12)

TeST(9)+ST( 13)
ST(13)-ST(9)-ST( 13)
ST(9-T
T-ST( 10)+ST( 16)
ST( 16)-ST( 10)-ST( 16)
SIC 10)-T
T-ST(1I5)+ST( II)
ST(1 1)-ST(15)-ST(I1)
ST( 1S)-T
T-ST(14)+ST(t2)
ST( 12)-SIC 14)-ST( 12)
ST(14)-T
T-ST(2)
ST(2)ST(9)
ST(9)-T
T-ST( 3
ST( 3)-ST( 5)
ST(S-T
T-ST(4)
ST(4)-ST(1 1)
ST(17)sST(13)
ST(13)-T



STC Ig)-ST(B)
ST(g)-ST(17)
T-ST( 15)
ST( 15)-ST( 18)
ST(17).ST(6)
ST(6)-T
ST( 11)-ST( 17)

C IF IT IS FOR INVERSE DFT,
C

C IFCINV.EQ.1)GO TO 60

T-ST( 16)
ST( 16)-ST(2)
ST(2)-T
T-ST( 15)
ST( 15).ST(3)
ST(3-T
T-ST(14)
S.( 14)-ST(4)
ST(4)-T
T-ST( 13)
ST(13)-Sr(5)
ST( 5)-T
T-ST(12)
ST( 12)-ST(6)
ST(6-T
T-ST( 11)
ST(l1 )-ST(7)
STC7-T
T-ST( 1)
ST( 1O)-ST(S)

ST(8).T --

60 RETURN
END



CALL 1'WT('2.i.iJ

CALL IDCT#3P'.M.s

~~ -v

CALL IDENTI.P.4II(WJ

CALL 4E!I.(P.PI.,S)

CALL f! '( q.III

Figure A. 1. Flowchart of Subroutine DECOKP.
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Figure A.3. Flowchart of Subroutine SUBS.
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Figure A.5. Flowchart of Subroutine IDENT.



96&

I~r;T(, m. N

I TJ1

Figure A.6. Flowchart of Subroutine TRANS.
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IW0-DliIiSIONAL .144KA~ I-.C0ILTIVE ALYSIS OF ARBITRARILY -SHAKEO REbl1tiS(e)

Petro% A. Maoragos, Russe*.l K. Hersetreau, and Ronald W. Schafer

Schoo- of Electrical Engineering
roeorg~z Institute of Technology

Atlata, Georgia 3033Z

ABSTRACT
We cant view the 2-0 prediction error sequence-

This paper is concerned with the use of 2-0 e(m~n) together with the coefficients
linear prediction for image segmentation. it 1(k* a), a ) as an alternative exact
begins with a brief summnary of the vmatheatICS ch aracterizaeon Of the Image signal x(r~n). The
involved In 2-0 linear predictive analysis of bias coefficient a Iaccounts for the fact *.hat
arbitrarily-shaped regions. Then. it introduces tt:C Intensity iinaglsaiplet are explicitly biased
a 2-0 LPC distance measure based on the error S Inca they are always nonnegative. The
r sicual of 2-D lirear prediction. Finally, it stakt)a Can be see. as aset of features
describes how the above results can be applied to cotainin 1 9 ormation about the specific image
image segmentation using a simple clustor seeking segment.-
algorithm. The results Indicate that
arbitrarily-shaped Image regions can be well Suppose that X(m,n) has Support on the re.
Identified and clustered using as features their gion Li in the (m~n)-plane. Inside Q we identify
2-0 LPC parameters. several homogeneous regions D .v-l,... .L as illu-

Itrated in Fig. 1. The generval linear prediction
problem IS to find a set of optimal

IM~ODUC71ON Coefficients 1a(k~t), a0) Which minimize a
mean-squared error

One-dimensional linear prediction has been-
successfully used by Itakura 1)) and others for
extracting speech parameters and for deriving a E- e2(m~rk) (2)
LPC Cistance measure in speech classification and Sn
recognition. However, It appears that there has
been no similar approach In pictorial feature where e(m,n) is def'ned by Eq. (1). The array
extraction and in image segmentation by Cluster- a(k,t) IS shown in Fig. 2 to possess a rettang6.
Ing (2,3). Hence, it is the purpose of this lap region of support which in the general Case
paper to introduce the use of 2-0 linear preclic- may Include any other desired shape. The total
tion and the resulting LPC distance for image number of prediction coefficients is P-(2--
segmentation. Beca-ise features in Images typi- Q1 1xR- 1 1-,and the number of our unknowns
cally are irregularly shaped, we begin by first is P+1. We can distinguish two cases deperdi ng
formulating the problem of estimating the optimal on whether the region is simply (I.-)) or
LPC parameters for an arbitrarily-shaped image multiply-connefled (L > 1):
segment. Such a segment may be simply- or multi-
ply-connected. a) One simply-connected region0

We overcome the fact that 0V has an Irregu.
LINEAR PIFOICTION lar shape by considering a one-dimensional

ordeing of the greater rectangular region a of
Let a~mn) eprsen a -0 the (m~n).plane; i.e., if a Is an N wh region,

spatially-discrete array of Intensity Image then a rouwist ordering would be
samples, According to the autoregressive image 0(m,n).afi~n)-j. This orderipig maps every pair
model Intrcduced in E43 for use in predictive (m,n), Such as 0 410, n cN-I. onto an integer j
imagt coding, belongIng to the ordered set

Z * 123.. '. If the information about
terowwise scanning of a is available, then OC-)

a~mn)11a~~t~~m-~n-).a.e~~n) (1) Is a reversible mapping of the re ion V~ onto the
set ZA and we can recover mn from J. MNw

(t) This work was supported by the Joint Services
Electronics Program under Conrat
000629-814--00U4.

.2-.2pill

4



the regions 0 ore defined by the sets of Inte- method the matrix C IS A SY0MtriC block-Toeplit"
gert Z-i,(J. jol,2, ....N2 , v-.l,2,....L where matrix and is always positive-aeffnite. because

then R(k, 1a0,j) equals R(lkiI. 1i-ji) or

I , - ' '( k-i I, -l -il). I 

'

09 otherwise b) Niltiple disjoint regions 0 v0 * ....-

if we think of Z and 2 HN.dimensional The problem here is to obtain a set of .
vectors, the r-th nnzero lement (ir) of their common coefficients Ia(k.x), a i which minimliz

component-vise multiplication Pill give us the the error I over all the regloRs 0 . v-1,2...,L
r-th pair (r.,n) from the i, pairs which make up simultaneously. It can be easily ?hOwn that the
the region 0 . Thus, we can consider a optimal coefficients are the solution to the
one-dimensional indexing for the region Ow : following system

_L L

Urd (n)-ZwEG 1(jr)], r.l,2,.....M v  (4) U * I r  (10)

The Initials IS mean 'indexing' for the *signal* where C r are the correlation matrix and cor-
x(m,n). hew, the restriction of Y(m.n) or its relatio)X veltor of the region 0 . The approach
translate zx.-kn- I" to_ can be thought of as to obtain the correlation and ?hift lags is al-
a Ply.dimensional vector: most the sa as in part (a). The only

difference is that in order to find the indexing
): r.iSin)'T(s)j IS(m,n) for the enserble of all tse regions. orne

sq.[$ (r): S (r)-x(m-k,n-a), hNaS to miltiply the vector 2n by the sum of all
- q q Vthe vectors Zv defined in h3o. hwever, if one

has already precoitputed C and r . It is easier
where q.IP(k.t), and IP(0,0)-0 IS understod. simply to add them componet-wise.
The indexlngs IS(.), IP(,) need not be the
same. At tnis point we can express the 2-0 cor-
relation lags [4 as i nner-proilucts of known 2-0 LPC DISTANCE
vectors:

Let us consider the augmented coefficient
vector b-[I, - a) and the augmented Correlation

RO OX s q,. matrix

where ( .I.j Similarly the 2- (0.0:0.)
Shift laqs S(k.S) 4] are equal to the sum of the . .] (1
components of the vector sq. q-IP(ks). r

The optimal coefficients which minimize the

squared error E over the region D are the solu- where R(0.0:0,0) is obviously the energy of
ti n to a system J normal equatios: a(m,n) over the analysis region. The matrix A

may refer to a simply-connected region or to
C disjoint regions. it can be proven that the

squartd error E can be expressed as the
where C is a (P+)x(P*l) matrix whose entries are positive-(semi) definite quadratic form
equal either to R(k, :i,.j) or to S(k. 1). I - bTA 6 (12)

m ,[i(lP'lll)) ... (1'P1 (P)3M ]T (8) Having reduced the problem to our one-dimensional
one by using the one-dimensional indexing fw the
arrays ak, L) and x(m,n) over the regions of

-r.[Cs0,s),..., (0p),S(0o)I (9) interest, we could use a 2-0 LPC distance similar
to the one used by Itakura [1 in the 1-0 case.
Thus, over an analysis region possessing augment-

All te above analysis refers to the d correlation matrix A, we define the distance
cevarlance method (4) which minimizes E only over between two sets ( al, e2) of coefficients As
the region 0 . Alternatively, we cculd modify
our ap)roach tO include also the autocorrelation (ilT Am/m&2 T A2)l (13)
method, which assumes that x(m,n) is zero out- d A(al log

side 0 and minimizes E over the entire From (13) it is Inferred that the above distance
(;,n)-6lne. In the covariance method the matrix Is a semi-metric, In the sense tnat it satisfies
C is sy mnetric and positive-definite, except for all the properties of a metric ea:ept one; I.e.,
degenr~tive Cases where it is d.(,, )-0 does not imply that enl 2 . Also,
positive-senidefinite. In the autocorrelation i t 

1  
clear tict tnil distance

.A

.. . . . .. . . . .. . . . .
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relates m and &Z only indirectly through the algorithm obviously depends ipon the method used
matrix A. to extract the LFC parameters. Thus, if we use

the Same number of prediction Coefficients and
the same prediction mask (Fig. 2). the covariance

CLUSTERING ALGORITHM and the autocorrelation method yield similar
results. However, the correlation matrix A in

Let us suppose flo that we are given a 2-0 the autOcOr-eltion method his much fewer
image data array x(m.n) defined over a greater different entries because of Its block-Toeplitz
region 0 . The starting point of our algorithm property. For instance, if P-8, the matrix A has
for image segmentation by clustering is to divide only 15 different entries compared to
the entire image into Hn smaller disjoint regions tPel)(P*2)/2-55 for the coiariance method. The
which consist of mote or less homogeneous size of the analysis regions does not play an
pictorial texture. This homogeneity will be important role as long as one stays well inside
hopefully reflected in a stationarity of the houngeneous regions. For regions, however, which
prediction coefficients over one region and a contain boundaries between different textures,
similarity between coefficients of disjoint re- smaller analysis regions are required. The shape
gions with similar texture. Then, we obtain the of the prediction mask (Fig. 2) was found to be
augmented correlation matrices A for each image of paramount Importance, Wie tried 3 different
suoregion. This way, each analysis region can be shapes: 1) Q1 k1- 1.l, Q2 R2-1 gives an all-plane
thought of as a pattern whose features are the symetric mask, 2) Qi-O, ib-2. R1.-l, R2.! gi
entries of the matrix A. From Eqs. (7) and (11) a half-plane mask an, 3) E -R1 0, Qj-R 2,2 gives
it is clear that the optimal LPC coefficients can a quarter plane *ask. All ;hese different masks
be obtained from the matrix A. Having obtained Involve the same number of prediction
the LPC characterization of each region (pattern) coefficients P,8. In terms of the average nor-
one could use any clustering algorithm which malized ean-squared error 1. the first mask is
employs a distance measure. We have used a var- the best and the third is the worst. However, in
ation of the so-called K-means [5) clustering terms of clustering performance the third mask is
algorithm modified to use the LPC distance sea- the best whereas the first is the worst. The
ture. Our approach is summarized below: reason for this might lie in the fact that the

quarter-plane mask is the deepest in both
: Select K initial cluster centers (re. directions.
€I7 -ci . ,...,K. The selection may be

either arbitrary, or autoatic using a max-min
algorithm 15] which finds the K LPC patterns EXIKRITWAL RESULTS
which are farthest apart.
St 2 Allocate each of the N0 LPC patterns Fig. 3 shows a 192 u 2S6 pixels black and

N terlZl d b their correlation matrices A, wh '.. image which Consists of 64 - 64 regions
and/or by their optimal coefficients al ) to one wii.. different texture. We used 32 x 32 and 16 x
of the K cluster centers according to: 16 analysis regions with P-8 in our clustering

algerithm, and the results were similar in both
m belongs to cluster j if cases. The 8 V tdiction coefficients for each

analysis regio. were obtained by using the auto-
correlation method with the quarter-plane 3 K 3

dAl, IC)-dA,(ei. ce). m-l,2,.... K mask. Fig. 4 shows the resulting clusters where
K-3. The analysis regions were 32 - 32 pixels.
and each region Is illustrated by a number 3,

for all i, i'l,2,...,N0. Ties are solved arbi- -1,2.... K, corresponding to the number of that
-traiiy. cluster which this region was assigned to. Simi-
Step-3: Update the cluster centers: Having larly, Fig. b shows results from clustering the
Tod--from step-2 that each cluster consists of Same 32 a 32 regions In K-S different clusters.
N LPC patterns. we find a set of prototype co- From Fig. 4 and Fig. 5 we see that the clustering
tficlents for each cluster (its cluster center) algorithm on this simple image yielded perfect
by using linear predictive analysis of multiple results which agree with our own percertual
disjoint regions (10); i.e., for each cluster j classification of the different textures in the
we sum up the 14j correlation matrices a.d vectors ima;e of Fig. 3. The above good results were
and solve (10). obtained by using analysis regions which were
.Ste-p : The algorithm terminates whenever the embedded well inside homogeneous textures. If,
CluiTer centers do not Change from the previous however the analysis regions contaVi more than
Iteration. Otherwise, go back to step-Z and one different teitures, then one should think of
Iterate again. reducing the size of the analysis regions and/or

employing other techniques to isolate the
The above clustering algorithm Is an Un- boundaries between different textures.

supervised pattern recognition scheme, ie have
found that it always converges in about 3.10
iterations. A good choice of the initial cluster
centers may affect considerably the speed of
convergence. The performance of this clustering

c -07 .
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Signal Reconstruction from Signed Fourier
Transform Magnitude

PATRICK L. VAN IIOVE, MONSON Hi. HAYES. MEMBDER. IEEE, JAE S. UM, mEMBER, IEEE.
AND ALAN V. OPPENHEIM, FELLOW, IEEE

Absrygt-tni tbis PaPPr. We Show that 8 ori IN ed or mouttidi- art only minor differences on the question of unique specifi-
menusoAl arqtaeace is uniquely specified adet mild ie"trCtitia by it cation of & sequence. between 1.1) and MD sequences, and
Wnjed Iouiet transfrm maffgnitudje (magnitude and a bit of phase in- between the tangent of the FT phase and the signed FT

formation). Ins addition. *a develOP a numrnical Algorithsm to 1110-
Mosel a ine-aarsentiouul or oriadtidimnsissla sequence From sta Fostier magnitude. In particular, it is shown that under very mild
transforms magnitude. Recontirtion tsamplers obtain"d usn this restrictions, the sig-.ed FT magnitude is sufficient to uniquely

algorithm awe al" poovided. specify a l*D or MO) sequence. We note that the tangent of'
the phase and the signed magnitude of a complex number

~. lNRODLST~ONcompletely specify the complex number.
In Section 11 of this paper. the bassc theory is presented. In

TN a variety of contexts, such as electron microscopy (I. Section III an algorithm for impleme. ng the reconstruction
I X-ray crystallography J21. optics 13). and Fourier transform is discussed, and Section IV illustrates several examples.
signal coding 14). it is desirable to reconstruct a sequence from
partial Fourier domain information. As a consequence. con- 11 HER
siderable attentions has been paid to this area, and some signifi nti etow ics h nqeseiiaino e

cant results have been developed. It has been previously estab-
lised 5j-71 hatuner erymil retritins fiiteextnt quence by its FT magnitude and I bit of phase. We initially

one-dimensional (l.D) or multidimensional (MD) sequerce iscnsdrteoedm soal(-)aeadtenxedth
uniquely specified *Zo within a scale factor by the tangent of its 1-0 reulr to the multidimensional (MD) case. Before %e pre.

Fourier transform (FTJ phase, and Rlgrsrithrois for implement- sent t0e theoretical results, we define the notatian that will be

ing the reconstruction have boen developed. tI is well known used throughout the paper.

that, in contrast, the FT magnitude does not uniquely speciry Let x~ (n) denote a 1.0 sequence which is causal and finite ex.

a 1.0 sequence. For U0 sequences, the FT magnitude specifies fent so that x(n) is zero outside 0 4 or 4 L - I. Furthermore,

a sequence to within a translation, sign, and a central symrrt we restrict x(n) so be real-valued. Let X(:*) and X(tw) repre.-

try 171, 181. and reconstruction algorithms developed so far sent the : transform and Fourier transform of i(n), so that

have been successful 171 for only a very restricted class of MD
sequences. X(z) = X(n)z'(I

From the above results, on the question of unique specifica-
tion of a sequence, there appear to be significant differences L-
between 1.0 and MD sequences, and between the tangent of X(W) X(.-) , = xre'.(2)
the FT phase and the FT magnitude. In addition, the tangent
of the phase and the magnitude of a complex numnber, which The Fourier transformi X(cjs) can be reprcsented in terms of its
have been considered in previous studies, do not conpletely real part XR(w) and imaginary pars XI(w). or isn terms of its
specify the complex number. In this paper, we show that if mgiueI~~) n hs 1 w sflos
the signed FT magnitude (magnitude and one bit of phase in-B
formation) is contidered rather than the FT magnitude, there X(W) WXRt(e) + 1X,(.) Xwlez'.(3)

To ensure that 0,(wa) is well defined at all w., we assume that
Mtanscript received August 24, 1982; revised March 23. 1983. This X(z) has no zeros on the unit circle. The phise function 0,(ca)

work w-i supk'orted by the Advanced Research Protects Atency mon. n()rpeet h rniplvleo h hs ota
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and ECS82-04793.
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Satement A41: Let x(n) and yin) be two tea, causal, and -

finite extent sequences. If IX(w)l -I Y(w)l. x(n) and y (a)
can always be expressed as

z(ot) - b(n) * e(n)

._._._._._ . and

Y (m) eb(n) 0a(N - I -n)

wheie t - #1 or - I and o(n) and b(n) are real, causal. and fi-
tite extent sequences with N corresponding to the length of
e(n), Le.,@(n) =0 ouside 0n<N- 1.

Statement A42: Let bQ,) be at real, causal, and finite extent
Fig 1. Mappingof the 1b phase (unctin. sequence. For any positive integor N, the equation

Re {B(z) Z-(K1 ~1
2Iii 0

is satisfied for at least P distinct values of w in the interval R,-
where P and R are as defined in (7).

Statemete A.43 Let e(n) be a real sequence which is zero
outside 0 < ( N - 1. If the equation

is satisfied for at least P di-tincl valiwes of w in the interval R,

E le then it is identically equal to zero and e(n) a (N - I - n).
We use the above three statements, whose proofs are shsown

in the Appendix, to demonstrate the following theorem:
Theorem P: Let x(n) and y(n) be two teal, causal, and tnite

e~l extent sequences with : transforms which have no zeros on the
unit circle. If G'N w) = G' '(w) for aUl w, then xQ,) - y(n).

Fig. 2. Fourier tnniform magnitude. phase, I -bit phase. and signed To show Theorem 1, we note from (5) and (6) that the con-
mnagnitude or the sequence Xt:j -I + 3z q' 5: 2 23 dition G,'11wM G;*I2(w) is equivalent to

where a is a knowns constant in the range of 0 < a ir. Thus, iri{Xi(w)] IX(W)l siget{Yn(w)) I Y(Wfl (8)
the complex plane is divided into two regions separated by a which in turn implies that IX(w)l I Y(wjl, and therefore that
straight line passing through the origin and at an angle a with
the r eal axis, as shown in Fig. I For example. foro a u 12. sip {Xw1 sign{(Y,()1 (9)

svt"(w) represents the algebraic sign of Re JX(cjs)).- More geti. From Statement At, then, x~n) and y(n) can be expressed as -

erally. S,*(W) is the algebraic sign of Re{e1i*/-*1 X(w)). The
algebraic sign of zero is assumed to be positive. xss) - b~n) 0 #a)

The function G,*(w) is defined as y(.s) - b(n) * #(N - I - n) (I0)

G~'() S~)IX~~l () were g - fl. Fourier transforning (10) we obtain

and will be referred to as the signed Furier transform snagrti. - ~ ~)5w
tude since it contains both magnitude and sign information. Y(cw) we CIWN 1i A(- w) 5(w). (I
An example of IX(w)l. *,(oO. ,*(w), and G*(w) when a - To show that e *I in (11), we evaluate (9) at w *0 and recog-
*/2 and X(.-) a I + 3z-1 + 5:- + 2: is shown in Fig. 2. nize that Xe,(0) =A(O) B(0) and YR(0) u eA(0) B(D). so that

Finally, given a positive integer N, we define a constant P
and an interval R as sign(A(0) B(0)) ,sign(eA(0) B(0)). (12)

N- ISince X(W) is not zero at w - 0, (12) requires that e a + .
-s and R =(0. wr) for N odd Sipnc ei 1. from (10), showing liszt x4) * y~n)is equivalent

2 to showing that &a) aff( - I - n). Toward this end, we con.

N aider die go~m
Pu andRN(, ir for Neven. (7)

2 Xjt(w) rRYi(w).

The uniqueness of a I-D sequence when the signed Fourier From (I I) with r ai. it can be shown that
transforns magnitude G(w) is specified is based on the fol X~j j~)2R(~~/V
lowing statements. The proof of these statements i givefn ~ X~)+Y~)=2RI~~~~'lZ
the Appendix. - ReI18MwCI("t 013j (13)



gasJER ITRANSACTIONS ON ACOUSTICS. SPLSHi. AND SIGNAL PROCESSING. VOL. ASS., NO.$. OCTOnBER Ies

From Statement A2. time bee At least P distinct values of w in For these two sequences it can be easily shown tlat IX(, -.

the interval R whichwe denoteas wt, i 1.2," P for which I Y(a and S(w=) -s (,' ). In this case, then x(n) and"
Re [D(wr)e11rW ] - 0. 1 w 1, 2."- .P,0., E R. (34) As) me different sequences. but they have the same signed FT

magnitude.

From (13) and (14). In Theorems I and 2. uniqueness results were presented as-
saiing that the signed spectral magnitude of a finite length se-

XR(+O) Y(..) , . 1 1 2,"", P, 'E R. (IS) quence is known for aU frequencies in the interval (0, 2c). In

From (9). both terms of the left-hand side of (IS) have the the case of FT phase, It is possible to generalize the uniqueness
same sign for all us. Since a sum of two terms having the same results to the case in which the FT phase is known only for a -:.

sign can be zero only when both tern s are zero, we have finite number of distinct frequencies. Specifically, it has been
shown 161 that for a finite length sequence of length N which

X.(,W) = R(i"-W) - 0 has no symmetric (zero-phase) factors in its : transform, any

and therefore also. (N - I) samples of the FT phase are sufficient to uniquely de.
fine the sequence to within a scale factor. Therefore. since the

X(- )Re(ud)
= 0 . sO I., ,"" ., R. (16) FT phase need not be known for all w. such a result has been

From (11) and the fact that e - 1. it can be shown that (16) useful 161 in the development of practical algorithms for re-
can be expressed as contructing a finite length sequence from its FT phase samples.

( -2 Unfortunately, however, a fixed finite set of signed magnitude
samples is not always sufficient to uniquely specify a real.

- Im1B(w)i'l'v- )(i = 0. causal, and finite length sequence. For example, consider the

S, 2.--- , P. w, 1E R. ( 7) following two causal sequetnces of length N - 3.

Since 8(w) is not zero for anyw . it follows from (14)ihat the x(n) =l06kn)2.66(n- 1)+ .26(n- 2) (21)

second factor in (17) satisfies the property y(n) = 1.2 6(n) + 2.6 5(n - 1) + 1.0 8(n - 2). (22)
Im[8(Wo )e',v-/ )l] 0e 0, i = 1.,2,'"A , C- R. (18)

Since y(n) is obtained from x(n) by flipping both of the zeros

From (17)and (18), of X(-) about the unit circle, both x(n) and y(n) have the

lnLA(w)ewl "#"i' )t =0, i= 1. 2.--. P,., W R. (19) same spectral magnitude. Furthermore, in the interval (O,) .'.
the real part of the Fourier transform of x(n) is equal to zero

From (19) and Statement A3.a(n) a a(N - I - n) so that x(n) at only one frequency, w =0.477023w and the real part of
-yn), thus demonstrating Theorem I . the Fourier transform of y(n) is equal to zero only at w-

The result in Theorem I can be generalized in various ways. 0.526166. Therefore, the signed magnitude of X(us) is equal
Specifically, in Theorem I. we have assumed that a = nrj2, to the signed magnitude of Y(us) for all w outside the intervals
which is a specific representation of the I-bit phase informa- (0.477023w. 0.526166w) and (-0.526166ir, - 0.477023W).
tions. It can be shown that the statement is true for other Consequently, an arbitrary number of signed magnitude sam-
choices of 0 < a < w. When a = ir so that S (w) a sign[ (w)I, pies within this region is not sufficient to distinguish x(n) from
a sequence is uniquely specified by Gl,') %hen x(O)=0. y(n).
Theorem I cart also be extended to anticausal (left-sided) se- Even though a real. causal, finite extent sequence is not

quences. The proofs of these extensions can be found in i91. uniquely specified by samples of its signed FT magnitude at a
When the above extensions are incorporated in Theorem I. we finite number of arbitrary frequencies, it is specified by sam-
have the following general theorem: pies of its signed FT magnitude at a nite number of properly

Theorem 2: Let x(n) and y~n) be two real, causal (or anti- chosen frequencies which are different for different sequences.
causal), and finite extent sequences. with z transforms which Specifically. for x(n) which is zero outside 0 < n < N - I, the
have no zeros on the unit circle. If ,(u) , ;.(us) for all Ws F7 magnitude IX(us)l is completely specified by (N- I) ds.
and 0 < a <w, then x(n) - y(n). When a - w. if G,'(cs) - crete Fourier transform (DFT) samples In the interval (0, W).
G;(w) and x(O) - y(O) = 0, then x(n) - y(n). The I bit uf FT phase S*(w) is completely specified by

Theorems I and 2 explicitly require that the sequences be the positions of its discontinuities and by its value at W - 0.
real-values and causal (or anticausal). The necessity cf these Since the function S*(w) has at most 2N discontinuities tn
conditions can be illustrated through counterexamples. Con- (-*. +w), 6 G(w) is completely specified by a maximum of 3N
sider first the condition that the sequences be real, and let y(n) samples at properly chosen frequencies.
equal el(* ' 1x(n) where x(n) is real. In this case. it is straight. In the above discussion, we considered only I-D sequences
forward to show that G(. G'(us). Since G(;() does not We now extent Theorem 2 to MD sequences. Let x(n) denote
uniqueiy specify x(n), 0(s,(w) does not uniquely specify y(n). an MD sequence x(n,. n2. ' . nu). and let G0(&#) denote the
To indicate the necessity of the causality (or anticausality) signed F T magnitude of x(n), where G,(m) represents G*(ui.
condition, consider as one counterexamnple the two-sided se*,- - .wA,) and is given by S,*(c&)!X(w);. We define an MD
quences x(n) and y(n) for which the z transforms are sequence x(n) to have a one-sided region of support in the At-

dimensional space rf, rs. " " ",n if it has nonzero values for
X(z) a -z2 +6 -z- = (z +2- : " )(-: 4 2 +z^) only one polarity of each he. For example. for a two-dimen-

Y(Q)t : 44z 2-4z 1- "(z.2" z':)'. (20) Moral sequence there are four possible regions of support

.3-3ARE!!~
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wfticb are eonseno with the sequenc being o- sded. cow. magnitude is required. but the sequence may have a fiotot.
reponsdin to she towi quairanta. Theorem 3. which follows. itable z transform and is uniquely specified in the strict sense.
represents a (nslaata dThpee 2 to encompases MID
sequtelles Ill. ALGORITHMI

Therm 3 Le z~a an y~) betworea finte xtet ~ In Section 11, we showed that under certain conditions a se-
quences with one-sided support and with s transforms uhich qisence is uniquely specified by its signed FT magnitude. In
have no stras s ol 1:.1 ... a Is a1 . ItfG*(w) 1 410 this section. we discuss an algorithm to implement the recon-

fora* all *( and (0 <a X0-. then AN - jk~.Whn). struction of a sequence x(n) front its signed FT magnitude.
Weas deontate thd val)diy0 of. Theote 3~t fo a 2D' s The sequence x(n) is assumed 10 satisfy the conditions of

We emostrte he aliit ofTherem3 fe a2-Dse Theorem 3. In addition, its signed FT magnitude G,*Iw) is
quence which has the first-quadrant suppoft size M5 X Ala so assumed known.
that The algorirhttr that we have developed is an iterative proce-

.x(n. r,)=y(nI.rt,)-o~utsideON 0 A l o4 s-Iand dure which is similar in style to other iterative procedures
studied by Gefchberg-Saxton ol I and Fienup (121. In the

0< Ora, 4M2 iterative algorithm, the -time" dnmain constraint that r(a) is

gThe proof for a higher dimension and for a different quadrant real and finite extent with a one-sided region of support. and

support is analogous to the 2-D case with the first-quadrant the frequency domain constraint that the signed FT magnitude
suport TodemnstateTherem3. enap the 2-D se- of x(at) is given by Gx(&r). are imposed separately in each

quenes ~n, a, an r'n 1,a,) ntotwoI-Dseqencs iis) iteration. Specifically, let X,(ws) denote the estimate of X(as)
aune (n .by ) the foloin r n o to Dkqenexm at the pth iteration. The estimate X,(as) is inverse Fourier

and (n) y te folowig tansfrmaton:transformed to the time domain to obtain 4;(R)

An - ZJY2)a n -ISF (3 From 4rr(n). we generate an estimate xr(n) which satisfies the
In essence, the transformation in (23) corresponds to mapping time domain constraints
a 2-Dsequence to a 1-D sequence by concatenating the columns
of the 2-D sequence. Clearly, iQn) and ;~(n) given b~y (23) are XP),Retz,;(a) for IstE A (6
real, causal, and finite extent sequences. From (23), it is clear (V(6
that the transformation is invertible. Furthermore, it can be )0tot X.0A
shown (101 that where A represents the known support region of ar(u).

I Xw~w~w)IWU. The sequenede x;(n) is then Fourier transformed back to the

and frequency domain to obtain X(a) as follows..

From (24), it follows that the signed FT magnitudes of 2(n) The new frequency domain estimate X,1. I(se) is then obtained

and $;(r) are specified by the signed FT magnitudesi of x~t1  by en, cn h osritta ~, 1 a)G9a)sflos
t,) and y(n1, it). Therefore, if GACos, 4,)-G*(&JI. W,) xe#, if S-su) - S.(ee)

Chen CG;*)- 6U(w. In addition, since Ark,.z3) and Yjzs. xrP.(a) IM a~eC2~r~ ifS(s' Sa
z3) have no zeros at 1:11 - lId - ), from (24),X(z)arkd Y(:) ICOe P
have no zeros on the unit circle. Since i~.n) and ~n) satisfy
all the conditions if- Theorem 2. it follows from Theorem 2 (28)
that ;it) - $ (Pt). Since the transformation (23) is invertible, Specifically, the correct magnitude is substituted for the esti-
xzt1. 111) * y~rt. . n 3) as required by Theorem 3. Mated magnitude. If S* .(4e) -S.*(&s), then the phase of the

The condition that X(w) 0 O at any at is much more restric- esiaei eand 1tews, h siaei elce bu

the or .0 squecesthanfor1-0sequnce. snce ~z)* 0a line that passes through the origin with angle a to correct the
represents surfaces in the (: .:,) plane for 2-1) sequences andsino *-w.Thscmltoeierin. eiiiaet-
points in the : plane for 1-0 sequences. From the proof of maeX Ps ehveue sgvnb
Theorem 3 described above, however, it is not necessary to re-
quire X(as) * 0 at any ws. We only need to require that X(a.) X.u), = Ie~,le'zoas (29)
*0 at the slices of Go needed to form i(as) in (24). This is a

much less restrictive condition than the condition in Theo- where 0,,(as) is given by
rem 3.

The theoretical result in Theorem 3 differs from that by S -1~ for 5S*(as) U +
Hayes [S1 in several respects. In the result by Hayes 151, Orly 2 (302

samples of the FT magnitude are required, but the sequence is

specification of the sequencr is only to within a sign, L transta.F.tion, and a central symmetry. In Theorem 3, the signed FT The iterative algorithm discussed above Is illustrated in Fig. 3

3-
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(b)C Re8*0race iWaVa**5 aPan0t~~i~

Fig. 3..4 SBeeck diagnwut ofrk ahe 47aiv aoltgo()rithm.sqc.

tally~~(b thatsfuce aeuc stable esimt ofthtsquncaobeoetieedi

always atained afe larg nu0e of iteations.

The ismpetibeaorf the algorithm in Fig. 3 houirand n-

verse Fourier transform operations are approximated by dis. - * ,.

crete Fourier transfrom (DFT) and inverse lIFT (IDFT) opera.
tions. Although the uniqueness is Rot guaranteed in terms of
the signed FT magnitude samples. we have empirically ob-
served that the algorithm reconstructs the de-tred sequence
provided that the sigr'ed F7 magnitude is densely sampled in
the frequency domain, so that the FT magnitude is completely(a
specified and the discontinuities of Sx(w) are individually re-
solved by the samples of S.,(oa). The FT magnitude IX(se)I is
completely specified by samples of lX~caiX when the DFT
size is twice the size of the known support of x(u) in each
dimension.

IV. EXAMPLES

The algorithm discussed in Section III has been used to re-
construct a variety of diffirent l-D and 2-D sequences from
their signed FT magnitudes. In ths section, we present some
of these exaomples.

Fig. 4 illustrates one example in which~ a l-D sequence ire -
constructed from its signed FT magnitude. In Fig. 4(a) is
sdown a 47-point sequence obtained by sampling female speech
at a 10 kHz rate. In Fig. 4(b) is shown the sequence recon- .

structed by using the iterative algorithm with the DFT size of
1024 after S0 iterations. In addition to the above exam'ple, a
number of other ex'mples have been considered. in all cases,(bjwe observed that the algorithm reconstructs the desired fig. S. Image of Ike 2V4 x ?S4 Pilss (a) Original loop. (b) Reco,-
sequence. aMeta bueam after 1O ilerabons.

Fig. 5 illustrates an example in which a 2-D sequence is re-
constructed from its signed FT magnitude. In Fig. 5(a) is In addition to thme examples show-a in this section, we have
shown an image of size 256 X 256 pixels. In Fig. 5(b) is shown studied a number of other examples. From these examples.
the image recontructed by using the iterative algorithm using we have made the following observations about the iltralive
the DFT size of 5 12 X 5 12 after 10 iterations, algorithm. First, foe sequences satlying the uniquenes, con

%
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saraints, if a DFT size below some threshold value is used, the by
algorithm does aom lead to the desired sequence. The threshold
value is different for different sequences. and we have not yet X(s)uz~sza f1 (I2- zXzJ ) (Al.)
found a simple way to determine the threshold value for a - .
given sequence. In practice. therefore, the DFT size is tYPcally where z* .- I 21 -. are the zeros of X(z), xe is the first
much lUger than the threshold value to reconstruct a sequence R,,nzero sample, and n, is the positive initial delay in x(n). It
from its signed FT magnitude. Second. the DFT size required is well known that the FT magnitude of a finite extent I-D se-
Is typically much larger (by more than a factor of 10 typically) quence remains unchanged only when the sequence is subject
than the size of the data for i-D signals. For 2-D signals. we to linear shifts, sign inversions, and/or zero "flipping." The z
have observed that the DFT size of 2N X 2N when the data transform )'(:) may therefore be written as
size is N X N is sufficient for all examples we considered. This
difference is in part due to the fact that the magnitude of Y(Z) ±Z~ h~o 1 ( - Z " ') f ( Zj* z')
2N X IN DFT when the data size is N X N uniquely specifies te (Wa,

a 2-D sequence within a sign factor, a r .nslation, and a central (A 1.2)
symmetry, and therefore the ambiguity that needs to be re-
solved by I bit of phase information is much less for 2.D sig- where n2 is the positive initial delay in y(n), (r) is the set of in-

nals than for I-D signals. Third, the threshold DFT length is dexes of the R zeros of Y(z) which are zeros of X(z) reflected

approxinately the sane for different choices of a, as long as a across the unit circle, &:A (u is the set of indexes of zeros

is not too close to 0 or w. As a approaches 0 or a, the threold which are unchanged from X(:) to Y(:). We may also wnre

length is significantly increased. The choice ofa = f/2 permits (AI.I)and(A1.2)as
the use of FFT routines specific to real sequences, and there- X(z) = A(z)" B(z)
fore, uses less computation time and less storage space.
Fourth, the convergence rate of the iterative algorithm is rapid Y(z) :tC(z) B(z)
initially and becomes slow as the number of iterations is in- or
creased. Fifth. we have observed that the mean square error
between the original and reconstiucted sequences decreases x(n) = (n)* b(n)
monotonically as the number of iterations increases. Sixth, y(n) a (n) * b(n) (Al 3)
the convergence rate of the algorithm can be significantly im-
proved by using an acceleration procedure similar to that used where

byOppelimeol. 1131. Further details on the behavior Of A(Z)= -(, - a) fl (i-z z-)the iterative algorithm can be found in Van [love 191.

V. CoNcLusIoNs 8(,)"z"tx. [1 (I - S1 C')

In this paper, we have shownf that a I-D or MD sequcnce is IG to)
uniquely specified under mild restrictions by its signed FT
magnitude. In addition, we have developed an iterative algo- C(z) = J| (zn 4 Z-).(A)

rithm to reconstruct a I-D or MD sequence from its signed FT
magnitude. When this esui! is combined with the previous re- Wt now show that c(n) is a(n) time reversed, represented by
sult 151 on the problem of reconstrscting a l.D or MD se- a'l.,). The length of the sequence a'(n) is N n, - n2 4R + I,
quence from its FT phase, we vbtain a very general result that if we include the leading zeros. Therefore.
a l-D or MD sequence is uniquely specified by its FT phase or
its signed FT magnitude. In addition, under mild restrictions, (n) n(N i - n)
an iterative algrA'thin which is similar in style can be used to A ()=AC)r")=z l (I -z, a)nC(z)
reconstruct a I.D or MD sequence from its FT phase or signed s{,)
magnitude.... so that c(n) a(N- I - n). From (A 1.3), the sequences x()

AWt NOtx and y(n) are expressed in the adequate form. To characterize
Statement .41: Let x(n) and y(n) be two real, causal, and e(n) and b(n), we examine their * transforms. Since B(z) con-

finite extent sequences. If IX(w)l I Y(w)l, x(n) and y(n) tains only a finite number of negative powersof:, the sequence
can always be expressed as b(n) has a finite causal support. Since A(z) and A (:) , C(:)

contain only negative powers of z, it folows that e(n) and
x(n) ,b(n)e(n) *(Nl- I - R) are causal so that e(n) is zero outside On

y(n) a eb(n) * a,(N - I - n) N- I. If the z transform X(z) contains a pair ofcomplex con-
jugate zeros, than they must both belong to {u} or both to (P)

where e , +1 or -I and o(n) and b(") are real, causal, and for y(n) to be real.v~dued. The r transforms A(:) and B(z)
finrte extent with N corresponding to the length of e(n), i.e., may therefore contain complex zeros only in conjugate pAirs so
a(n) a O outside 0 4 n 1 N - I. that o(n) and ben) are real. In the case n > it, we simply ex-

Proof A general expression of the z transform X(z) of a change the roles of x(n) and yen). This completes the proof of
sequence x(n) which is causal and has a finite support is given Statement A I.

o-6
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Statemet A2: Let b(e) be a teal, causal, and finite extent o ., *.. o -, .a .

sequence. For any positive integer N, the equation N.. ....... .... .-..
Re( U 1 ,1 ) t ........ .. ... :.

is satisfied for at least P distinct values of w in the Interval R
where Pand R aie as defined in (7) of the text.

To prove tha. statement. we introduce the notion of un- (a) M

wrapped phase. Given a Fourer transform M(a) which has no FI.6. unwraped pw h of thefaation Aw) fMr0) (a). (a)N-

zeros. we define its umnwiapped phase $Mt(w) as !he unique 4. b)N- S.

continuous function of wo which satisfies
Is satisfied for at least P distinct values ofw in the interval ,',

M(W.) - IAI(w)leIOM(W)  (02.l) then it is identically equal to zero and a(n) A &(N - I - n). P

for all to and which takes the value of 0 or -s at - 0. The and R are Jefined as in (7) in the text as

unwrapped phase has the following properties. If we define NI
the function F(w) as p 3 7 and ,t.(0, ) forN odd

FM )L() () (A2.2) Pa ndRa(O0,r forNeven
2

then if follows thattn follow that (w we Prooff *N Odd: With the use of trigonomnetric fnrmulas.
F 0040 O M() 2- we obtain

where
I= if 000),- 08(0) =_ (o-It~oe

' ( v '

otherwise. (A2.3). N. (IN27- 0(il)s . Wv w (A3.1)
The unwrapped FT phase 08(w) of a causal sequence bn) .'0o

satisfies

0(0);>0r) (A2.4) R ) { 2 - - 2 , s in n t

The unwrapped phase of the function (A3.2)

is )" "
'(N

"
)Z (A2.S) Since the set of the (N - 1/2 functions sin w, sin 2w," ,sin

N- I (N - I)w/2 is a atehyshev set on the ipterval (0. a) as is shown

OD(w)M -W N-. (A2.6) in [91 and since G(w) has at least (N - 1)12 distinct roots in
the interval (0. I), it follows that the coefficients of the ex-

We now proceed to the proof of statement A2. We consider pansion in the right.hand side of (A3.2) must vanish
the unwrapped phase 0*F(w) of the function ~\ '-f~r- I

1() (w~iw (N -1)1'. a - a + ~J n 0;

The equation Re(F(w)) - 0 has the same roots as the equation N - I

*F,(t) =+ k i, with k an integer, 2

since F(w) has no zeros. From our previous discussion, we

have #(,r)ae(N- I -n); n-0, , N.- I.

- (F(W)" CF(O) O O()" 011(O) +OD(W) 00(0) When N is even, the expansion of G(t,) is

* .* - ~J)~. (w).

Since the continuous function 0p(ow) decreases at least by
(N- 1)12 w on the interval R. it follows that the graph of .sin to.
*,(w) crosses at least N12 lines of phase 2 + k ir in (0. iI if 2)
Niseven and at least(N- 1)/2 such lines in (0, x)ifNisodd. Since the functions sin w/2. sin 3w12. -", sin N- 112w
Fig. 6 shows OF(w) when b(n) .(n), for the ca.s N 4 and form a Chebyshev set on the interval (0, x] as is shown in

N" $. 19|, it follows that .
Statement A3: Let P(n) be a real valued sequenced which is

*.zetooutsideO n(,,N- 1. Iftheequation )
a G I- - 0; n,,,-,

Im (A(z),(' ')I j) 0 2

- .. .. .. .. ..
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The phase-retujeval problem for discrete multidimensional fields is investigated. In particualar,mareursive proce-
duare is developed for reconstructing a signal from the modulus of its Fourier transform. Thle information neces-
ary to begin the recursion is the boundary values of the signal. Althoulh it is not always possible to determine
these boundary values from Fourier modulus date only, if the sequence has a regon of support with a certain gteom
et"then these boundary values can be determined. These geometries represent a generalization of the conditions
far off-axis holography.

1. INTRODUCTION ground ia therefore provided in Section 2.A. In addition, me -

Thereontrctonofa igal ro te aptue f t% recent results concerning the uniqueness of the aolution to the- -

Fourier transform, generally referred to as the phase-retrieval paertivlpolmaebifyrvee nScin2B
problem, arises in a variety of different contexts and appli-
cations and within such diverse fields as crystallography, as A. Notation and Termnlooy
tronomy, optic,-, and signal processing.1-2 There are three A two-dimensional sequence ia a function of two integer
fundamental issues involved in the phase-retrieval problem: variables m and n. which is denoted by z (in.* n). The two-
thet unliquenesa sif the solution, the development of algorithms dimensional z transform of z(m. n) is denoted by' X(xs, t2)
for reconstructing a signet from the magnitude of its Fourier and is defined by
transform. and the sensitivity of the reconstruction to inca-* -

aurement errors and computational noise. IntUispaper st- X(zi,?2) - X (m. n)Zs_-Z25 , (1)
* tantion is focused on the reconstrurtion problem. More

specifically. followingsa brief review in Seedion 2 of some recent where z1 I nd z2 are complex variables. T1he two-dimensionald
results concerning the 'sniqueness of the solution to the Fourier transform of z(m, n) is equal to the 2 transform of
phase-retrieval problem for discrd!e two-dimensional sgnals, rim. n) evaluated long the unit bi-disk irzi I - l and
a freurive solution to the pnse-retrievsl problem is devel- is given by

- - aped inSection a Thin recursiv algorithm is similar to other
phase-retrieval algorithms in the sense that some signal in- X (,i.l. e''j-am le~ie~i (2)
formation, other than the magnitude of its Fourier transform. ....
is assumed to te known-' Specifically, this recursive aIgo- where ie1 and "r are real variables that represent the spatial
rithmn assumes knowledge of wbat we presently def ine as t he frequencies o' the two-dimensional Fourier transform. '-*I boundary values of the signal. Although it is not always the Written in polart form, Xle)-i, ej-t) is expressed in terms of
case that the boundary va!.ies of a two-dimensional signal are its magnitude and phase as

* known, it is shown in 'section 4 that. in some case, the
boundary values of a signal may Le determined from the given XMe'-1, ei.-sV - X(ei..i, e./-)ieiI#-(i*k (3)
Foarier-transform magnitude information. In particular, it

is sown hatifs wo-imenionl seuene ha a egio of Thus the phase-retrieval problem is concerned with the rp- -.-

support with a (ertain geometry, dhen the boundary values of covery oftyln(m n) given only the spectral inpitude (friction i . .-

the sequence may be easily recovered. The," geometries I~,e'l
reprsen a cnealiatin o theconitins or fi-xisho- The two-dimensional peqluence., considered in this paper
reprsen a) iseai~o rea and nonzeroon for onlyxi ahiieoubrofvle

lography. are assumed to be real valupd and to have finite support, . e,

of the ordered pair (in, M., For c ;nvenience it i assumed.
L. PHASE RETRIEVAL without any loss in generality, that a sequence with firite

support has first quad.-ant tupport, ke., .z (mn, n) - 0 if mn -C0
In order to develop the recursive phase-retrieval algorithm or if it < 0. In addition, if it is known that x (m, n) is vero3
in Sectiun .3, somne notation And terminology related to discrete outside the rectangular region RIMf Ni containing a&l points
two-dimensional signals are necessary. The required back- (in, n) for which 0 S in <Meand 0OS n < N. iCe..
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R(M. N) - 1,Mf- I; xij. X - 11. (4) two saquuelated byF. (6)ansi to be quvakand
this equivalence relation is denoted by

where X is used to denote the Cartesian cesu products, e~g..
then Mons. nt) is said to have support RMC. X't ihti eain z(i. a) - y(m, i). (7)

Szqce ~ ~ ~ ~ ~ ~ ~ Wt thes tr-delatiaonanfrr .f euec the uniqueness result of interest is the
frst dasdrant support is a polyrvw: ial ini the two variables, ffoig

withind fatrs of Xzro deP Un als pzICs ofILII woynmaltte t Theorem 1: Let Ami, nt) be a two-dimensional sequetice
wririndcirs ov er theield as a p.t* L ofpolvs'osnast with finite 3upport that has a two-dimensional Z transform

are rreucibe oer te feld f ctzp~ r~rnhes'0 that, except for trivial fartors of the formgo aszs is i,'
reducible. If YKm nt) is another two-dimensional sequence

X(Z 1.Z2) az01
1

'22"'f Xa4Z 1. 22). (5) with finite support with I Y~el".e''tP - jX(e'-&.#e'')I for

whete ~is rea nuberand 0s ad I~ ae nonegtwein. It should be pointed out that the requiretuvrnt that X(zs
tegers. The irreducible factorS Xh(Xs, re).which mayhe of z2) he irreducible is. not a particularly strong csnstrisint.
arbitrarily large degree, are the two-dimensionall countL-rpart Specifically. it mey he shown that ssithin the set of all two-.
of the linear factors that define the zeros of the x transform
of a one-dimensional .eune lal, ic hs rs dimensional sequences with finite support the suaoset of all

ducile actrs e plynmias intwovarabls. he eroseA sequences that roe reducible a trnfr s bset of measure
ue fordmesioaz polnoms n e twonabesi the zoset zero.3-'2  Me result. almost all two-dimensional boeus-rms

pftodiesoalatanfrsarneto. nth ,r with finite support will satisfy the irreducibility requirement
plane.of Theorem 1. irreducibility of the z transform of a two-

B. Uniqueness dimcnaional sequence may. its fact. L- guararteed with the
An important issue in the phase-retrieval problem is the un- proporr placement of point sources outside the sequenc.i's re-

gion of supporL13S
iqueness of the solution. It is well known that, without any Oelmtto fTermIi hti eursta h
additional information or constraints. a signal (discrete or magnitude of the Fourier transforms of z(m, n) and yQ'n
continuous, one-dimensional or multidimensional) is not be equal for all valuesinfia5 and wtr. Fortunately, however,
uniquely specified by the magnitude of its Fourier trans- Theorem I may be extended so that the magnitudes of the
formY.'1 The absence of a unique solutio.. stems from the Fourier trnsforms of atm. ns) and y(in. nt) need only be equal

*fact that it is always possible to convolve asig-al with an at-- for a finite numbe. of values of , and u2,. The numberrof
bitrary all-pass signal tone that has a Fourier transform with points for which the Fourier-transform agnitudes musir be
unit modulus) to obtain another signal with the same spectral equal is determined by the size of the regions of support of

* magnitude. As a result, the ability to incorporate some ad- xtm. n) and y(m. n), wheteas the locations of the sample
*ditional information or ktnowledge about the signal to con- points in the t"2plane are constrained to lie on a regular

strain the set of admissible solutions is necessary in order to 'attice. Specificlly-
obtain a unique reconstructions. Since many of the sihogmnaetls. t ndyn, ib todmesoa
that are of practical interest are of finite duration oresltent. sqecsihupst~fN.I ~fr 1 Mn
a fisnite support constraint is often used in phase-retrieval bfo 1. arditntelnu esinhenevl
slgorithams' As a result. the uniqueness of the solution to 10, and if
the phase-retrit .al problem has been considered for the csse

* in which the solutior i mr iontrained to be of finite le-igth or MXei-t, eiM)I 11 01.r'. ei-I)j for w, a. as..am:-
* to have finite support. Unfortunately, however it has been wz - bl, b,.~ . .v

shown that foir oedmnialsignala (either continuous or()
discrete) such a constraint is not sufficient to ensure a unique then yKm nt) - x (m, 0t.
solution because of the posaibility of zero flippingr2.l.lt For A si cial cooe of this theorem results when the pointsaii and
two-dimensional signals with finite support, on the other biare uniformly spaced between 0 and 7. In this instance in

*hand. the uniqueness results are considerably different. Al- patclr ocndincnaneinE.()seqvlnto
though the uniqueness properties are not well understood for prltlr h odto otie nE.()i qiaettthe constraint !hat the magnitude of the 2M x 2,N pointthe continuous case, considerable progress has been madse for two-dimensional discrete Fourier transforms of z(nt, a) and
the discrete cam. In particular, it has been shown that the y~n, n) are equal.
two-dimensional counterpart of zero flipping in the discrete
one-dimnsional case is the flipping of the zero contours of the
irreducible polynomials that define the two-dimensional 8 3. REUPSIVE PHASE RETRIEVAL
transflorm of the sequsence.3 It folloars therefore that. if Xr,, As was stated in Section Z~ there exists a rich and useful clam
a,1 ) is an irreducible polynomial, then v (mn.n) is Lniquely de-r of two-dimensional sequences that are uniquely defined to
fiste by its spectral magnitude to within the trivial am- within some trivial ambiguities by the 17a2tnitudes of their
biguities of a linear shift, 4 reflection of the sequence about Fourier transforms. e.. the class of two-dimnensional se-
the origin, or by ascale fectof (-I). More specifically note quenoes that [save finite support and irreducible z tramnns.mi
that, if two sequences (. ni) and y(su, nt) are related by In spite of this uniqueness result, however, the reconstruction

s ~a~m .A, ~of a two-dimensional sequence from its spectral magnitude
Y(m. at) a l(n .A ) () remains a difficult psob ism in the absence of any additional

for some integers A and 1, then x (i, it) and y(rn, nt) have informationolconstrainta. Theresores numnberofidifferent
Fourier transfors with the same magnitude. Therefsore any algorithms have been proposed that incorporate additional
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signal iforiationorconstraintL. Gerchberg and Saitonm, for a
oetample, developed an iteative algorithm that Asaumes, in RN..~tf(s
addition to spectral magnitude, information about the mag- 01-1 ...... O

nitude of the sequence _-(insn). which waa Asaumed to bea
complex-valued function of m and nt.6 Fienup. on th ote A ........ ~.. .. sm
hand, has considered an iterative algorithm that incorporates,
in Addition to a finite support constraint. a positivity can-

Have et Al. have investigated iterative phase-retrieval algo- --
rithms from signed Fourier-transform Mnpitude. i.e.. Fou-
rier-trseisform magnitude akng with one bit of phase infor-

saticin. In this section. a recursive solution to the phase- d-

retrieval problem is developed for reconstructing a two-di-
mensional sequence from its two-dimensional auwcurrlation a .......... ~-r 4 t,

function rim. ai) when the boundary values of xim. n) are
known. Thus this algorithm is similar to those mentioned . . . . .F i

above in that some information in addition to the Fourier. ki..........:::'
transform magnitude is assumed to be known about x (m,n).
In this case, the additional information that is included conl-
sists of the boundary values ofs(in. n). -

A. Development of the Algorithm
Consider a arbitrary two-dimensional sequence x(m. n) **

whose nonzero values are contained within the rectangular
region R(M. N).as shown in Fig. 1(a). For convenience, it is 1Ws
asaunmed that 1? M. N) is the smallest possible rectangle that
contains all the nonzero values of r~m. 0). Therefore along Fig. 1. (a) A region of support. ROM. N). for atwo-dimensiowa se-

each edge of ROIM. N) there is at least one- v-dered pair (m, n) quence (b) The region of support of its autocorlation.
for which j-(m. n) is nonzero. The b~indary of im.n) is
therefore defined as the collection of all the points of z(m. n) budr auso h euneam ) h eoeyo
that lie along the edges of R(AM. N).bonayvleoftesunc i.),Teireyf
The autocorrelat ion of xz(m, n). dennted by rim, n). is given the bounder' value of xim. n) fron the boundary values of

by rim. n). however, is a nonlinear problem that, in the absenc
rim ni= zns n). x-ns )of any additional information. may not have aunique solutions.

Suppose, however. that the boundary values of xz(m. as) are
M-1 N-1 known [the determination of the boundary values from rim.
41- 1- n)~l~~kn t is addressed in Section 41. More spevifically. for k - 0.

where. Y is used to denote the two-dimensional convolu. - -~e
tionof as iY. Knowledge of the squared magnitude of the ZA(m) - zm, ki form 0.1.M -1 (11)
Fourier transform of z (m. ns) h equivalent to knowled ge of the b sdt eoeteoedmninlsqec htcre
autocorrelation rim, us) since they form a Fourier-transform bsd . dthe thrw the wo-dimensional sequence a (inre

pair. Clearly, the support of r~m. n) is contained within the sponas show ine Fig. row ofthe bondarynsivalsune of (mstu

rectangular region defined by (-Mt + I., A - I I x (-N + incud tshe first and The atbownaryvle of x n ) thi hu se
N - I. as shown in Fg. 1(b). Furthermore, since x(m. n) is inotue by is n h ls o&o i. ) hc r e

real, rim. ns) is symmetric About the origin. i.e.. rim. n) noedb
rl-n,. -us). alm) - x("s). 0(m) - XN- (i. (12)

In addition, note that
as well as the first and the last columns of (,rs. n 1. which-

rim.N-l)- r N-i X~~,N 1 correspond to the first and last values of each sequence sa m),
A- i~.)~~kNl .e.z() and x(M- 1). Now. with rs(ri) -rim. k;used

- a~, 0)* r-n~,N -to devote the Ath row of the autoctirrelation sequence, as
and shown in Fig. I (b), note that

N-I U-IU-1
r(M -1, n -xi. 1)X (M 1. + 1 xy- 2(k)aim + k) + 1: /(k): 1(in +4 ka) Pv2

0 On ( -I (13a)
uzin)z( -1,). (l0b) or

where x - Y is used to denote the ose-dimnensiona] convolution
of: andy. With the boundary ofr(m, n) defined as the col- :A!-2(M) * I-rn) + im) * z(-m) -rN-2(M). (13b)
lection of all the points of r~m, us) that lie along the edges of (R*- 'Il thst * denotes convolution.) Therefore, with aim),
its region of support, note that Eqs. (10) Assert that the j~im),&ndP-v_?tm) knownEqs.(l3)reprersentasetof2Nl-
bounArY Values of rim, n) MAY he determined from the I linear equations in the unknowns x 1(m) and xN-2(m 1. i.e.,
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a(m') and ZN..s(R~ #(N). the first two rows 3nd the last two
rows ofs Ins n) awe now specified.

Now suppose that the first (k - 1) rows and the last (h -
1) rows of j(m. a) are known, ie.. Min) and 13(m P along with
zidm)and :Nr-1-1 ) fo I .Z... k -I Then, asin Eqs
(13). a set of linear equations defines the unknown values in
the aequnces zh 1(ns and ZN(n)- SPeCificaly,

rN.4 in) - xN-h~m) * a(-m) + 16(m) - z&-1(-m)

Fi:. 2. System intereuon of the linear equations that definie the + r N-h 51(i) M xj(-(17)
recursive phase-retrieval algorithm. a

which may be rewritten as
the values of x (i. n) in rows I and N - 2. A system inter- xiN,(m) - a(-mn) + P3(m) 0 z&.s(-m) 64~-4C"00. (18)
pretation of the set of linear equations given by' Eqs. (13) is whe
shown in Fig. 2. Specifically. Eqs. (13) define the sequence whr
r.. 2 Wm as the sum of the outputsi of two linear shift-invarjant A-2) ( Z~.5~()*z(-)(9

(one-dimensionsl) systems with unit sample responses; *(-m) jkm)r-m - i-kj)xim 19
and Antm) that are driven by the inputs z._2(m land za-s. iavcocn~tno ronatcreainvje ~sm
respectively. The goal is to recover the unknown values of the adsm fcreain fpeiul optdrw fxm
6ignals, :x..2(ml and x (-m I from the available known in. ansu.ofcretisofpvoslcmuedowofx .
formation. i.e.. from the signal r~m. ns) and the boundary ns). In matrix form. Eq. (18) becomes

valuesofstm.n) Recall, however. that the boundary values B (20) -ofzx(m, n) include the first and the last rows ofrx(m. nl1,which
correspond to the unit sample responses of the two filters in weetemtie n r dnia otoei q 11
Fig. 2, as well as the first and the last columns of x, , whr hiarces)n r ietclt hoei q 1)
which define the initial and the final values of the inputs to Thus Eq. (20) provides a recursion for comsputing the rows
these filters, i.e., X140),zj(M - 1). xN2() and x.v- 2(M - x*-i and 1yv~i from the values of at and x ~~ for I 1,

1)... 2. - 2. The initial conditions required to begin the
In order to investigate the solution to Eqs. (13). let us in- recursion are the fr't and the last rows of xfm, 0. i.e.. &Wm

traduce the vector notation and 0(m). Therefore. given the boundary values of x K n).
the entire two-dimensional sequence may be recovered from-

Z. j14(O1. s xtI z.(M - U1j. (14s) its autocorrelation function by using the linear recursion jEq.

r- Jr. (I - Atl, r. (2 - M). .. P. (A - Ill. (14b) (20)]. pro-.-ded that the linear equations may be uniquely
solved for the unknown raws. It may be shown, however, that

Thus Eqs. (13) may be written In matrix form asa sufficient condition for a unique solution to Eq. (200 to exist
* B) N~2iis that a(m) and 16(m) not be identically zero and that a(m)

[A BI15 not be related to O(M -1I- in) by aconstantscawe factor. In
I X1J tN2 this case, the unknowns in Eq. (20) may be recovered bya

where A and 8 are (2M - 1) X M convolution matrices. As pseudoinverse matrix operation. One interesting feature
an example, for a sequence with support R(3. 3), i.e.. x (m. ns) about the recursion that should be pointed out Is that it re-
is a 4 X 4 array of numbers. Eq. (15) is given by

0 0 0 00 03310 0 0- :(0) .-(-3)-
0 0 a0  a, 132 0 13 0 0 X20)l r2(-2)
0 ao *I *1 1  

02 0 3 0 z2(2) r2(-1)

a o 0 1 ft 5 3 A Do I , 1 . 2 3 3~ X ( 3 ) P ( 0 ) ( 1 6 )
a, *2 013 0 0 P 1o 1, 2 13t Z(O) l'3(
a2 C13 0 0 0 0 0lo 1  i~ 2(2
a3- 0 0 0 0 10 0 z3 zi(2) r2(3)

Note that zi(Ol, Zi(3), 2(0). and 22(3) are boundry values
of z(rs, island thus are assumed to be known. Therefore Eq. quires the computation of only one pseudoinverse matrix.
(16) represents seven linear equations in four unknowns. In The recursive solution for each row consists simply of the
the general case. there are 2M coefficients in Eq. (15) that are computation of the vector IN-S in Eq. (201, which is then
required in order to specify the vecton, x, and xN-2- The multiplied by the pseudoinverse matrix.
boundary values of zlrn. a). however, define the initial and

% the final values of these vectors. Consequently, Eq. (15) 0. An Example
represents 2M - I linear equations in2f-4unknowns. For An example that illustrates the rcursi~e mmcnstruction of a I
the moment, it is assumed that these equations may be two-dimensional sequence from its autocorretlation function
uniquely solved for x, and zN-2. Thus, including xo(rn) - and its boundary values is shown, in Fig. 3. tIparticulara
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of Cerchberg and Sam that. in the spatial domain. incor-
potate. the known boundsary values and the recursively
c-,.uputs row and columns.

4. COMPUTATION Of THE BOUNDARY
CONDITIONS
As was noted in Section 3A the boundary values of xz(m. n)

a. ~. ae related to the boundary values of the autocorrelation
funecon rim, n) through a set of nonlinear equations IFqs.
(10)1. Aithoug"' it has been demonstrated that the solution
to thes equations is not necessaily unique, there are rame
for which the solution is unique and for which the boundary
values a: s~pi, n) may easily be determined. Consider, or
example, a two-dimensional sequence x (m. n) that is known
to have a trisangular region of support. as shown in Fig. 4. The
region of support of the autocourelation function of x (m. n)

(a) is also shown in Fig. 4. Note that the three comner points of
x(m, n) are related to one another by the following three
second-order eqoations:

r(M. 0 - sWM. 0. 0).

r(0. N) a x (0. NWz(. 0).

i-CM. -N) a A(O, NWxM. 0). (21)

By assuming that 4IO, 0). rIM. 0), and z(0, N) are nonzero.
the solution to Eqs. (21) is easily shown to be unique to within
a sign. Furthermore. once these corner points are found, the
entire boundary of x~n. n) mayeasily be recovered since the

S ~bourndary values of Aim. n) are proportional to the boundary -
values of rim,n) eg., s(m,0) a r(mn.-N)x(O.N) formr 0.
1-..M. Therefore two-dimensional sequences that are
known to have a triangular region of support may be easily

aA

Fig. 3. Phase retrieval using known boundary conditions. (a)
Original imame Wb lscxntrcted image.

original two-dimensional sequence that has a rectangular .....
region of support of extent 64 pixes by 64 pixels is shown in -- - -s(.O

Fig. 3(s). The sequence that is obtained from the recursion soO
[Eq. (20)] by using double-precision arithmetic is shown in Fig.
3(b) and is indistinguishable from the original. Although the
recursive phase-retrieval algorithm successfully reconstructed
the two-dimensional sequence in this example, this is not al-. ........... iON
ways the case. In particular, although it has been observed
that the recursion is well suited for reconstructing two-di-
mensional sequences that have small rerions of support, eg..
R(M. N) with M < 64 and N < 64, because of the recursive..................(M.0)
nature of the algorithm the ieconstruction is quite seitive ..........._........

to errors that arise from computational noiqe. Specifically. ....... m...
whereas the reconstruction of large two-dimensional se-
quences is accurate in the initial stages of the recursion, the ............................................
Propagation of computational noise through the recursion
decreases the accuracy of the reconstruction as the recursion
progresses. Nevertheless, in reconstructing a two-dimen-. ............... )
sional sequence that has a large region of support it is possible rmN
to consider using the recursion to reconstruct a small number 11s)
of rows and columns (which may be done with a high degree Fig. 4. (a) A triangular region of support for a two-dim~ensional se-
of acuracy) and then use an iterative procedure in the style quence. (b) The regin of support of its autocorrslatiou.

4 0
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a may be uniquely determined from the outocorrelation rim.
a), and therefore it follows from the results of Sectir 3.A that

RegiReinRi zxnt. a) maybe recursively reconstructed from i-tm. Ms. It
fitI is interesting to note that, for the ca~m in which the point

source is situated at (M. All. Fiddy et at. 13 have shown that
the z transform of the two-dimensional sequence (including

..... . .......... ...... the point source) is an irreducible polynomiol provided that
.......... z(M - 1. 0) is nonzero Therefore, according to Theorems '

I and 2,a unique solution isglsranteed. Notealsoithatinthis
............... Regioncaaethe amplitude of the point source pint.n) need not be

Ass~li.................Vill known. Specifically, as in Eqs. (21). plm. n) and the three
IV remaining corner pointsof z(m, n) are related by a set of four

.......... second-order equations that may be uniquely solved for the
........ unknowns. provided that they are nonzero.

1.. xt.OP mConsider nowr the case in which a point soure lies in region
II, IV, VI,or VIII. Unlike the caoe described above, it is not,

Ntson. Reion Region in general, possible to recover the boundary of x(m, n) from
V VI ViI the autoorrelationequencer(n, n). For examnple. consider

Fig.5. The divison ofthe two-dimiensional plane into eight regions a unit modulus point source in region 11 situated at into. N).
and the rectangulsr region ft M. N).

reconstructed from only their autocorrelation. provided that Raeo
the amplitudes of the corner points are nonzero.I

Sequences with a triangular region of support, however, are
a special case of a more-general class of sequences for which IN
the boundary, and hence the entire sequence. may be recun-
structed from its autocorrelation. In part icular, consider aN........
two-dimensional sequence that I..s a rectangular region of
support R(M. N) and suppose that the remaining two-di-
inensional plane is divided into the eight regions shown in Fig. ........
5. It is well known fronm off-axis holographic techniques that
the incorporation of a point source sufficiently far removed
from the region of support of x(m, n) will allow x(m. n) to be .........

reconstructed to withinsa scale factor from its sutocorrelation.2  INAi
In particular, if p(m. n) - 6(m - k~n - 1) is&a point source at
m -k,n - 1,and ifk a.2M- I or if1>_2N- 1.thenx(m.n)
may be trivially reconstructed from rim. 0). It is not neces-
sary. however, that the point source p Qn, n) satisfy this bep. 45)
arstion constraint. Suppose, for example, that p(m, n) is a
unit moduluis point source that lies somewhere within region
I.,lVor VII. To be more specific, let us assume that p(m, Regio
a) lies in region I and, in particular, that pim, ns) - AIm - M, I
n -MN.as shownin ig. 6(). In this case, the two edgesx z(0%
a) and x(mi,0) ofz(m., n) (illustrated in Fig. 5 by the shaded w

region) are easily recovered from rim, n). In particular, note t~N
.1. ... ..........

r(M. N -n) 4O, n) for n0 ,...,N - I
(22s) Region

and .........

P(M-M. N) (m.O) formO-0l.'M- 1. ...0 ..... .i 0

(22b)N-

Thsrefore both of these edges of (in, ns) correspond to the41
edges of the autocorrelation sequence rim, n) With these
edges of z(m. ns) determined, it then follows from Eqs. (10)

*that the remaining boundary values ovf ('n, ns) may be found flit
by a simple deconvolution or an inverse filtering operatio....Pitsicssfiin o h eennta ftebudr
Therefore, ifsa point source of known amplitude is situated values of*a two-dirnensioiial sequence. xlm. ail. i)A singIl point
snyweo within one of the four quarter-planes defined by source in region ttM.N). WbtTwo point sciuisone in regionu If

*region 1. 111, V. or VII, it follo"s that the bouary of(m~, n) at (iii.. N) and one in region Vill at 4M, no).
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in this case, thes frst row of x(m, n) isomaily derived from r(m. although the determinationeltithe bounidary values from only
as) sineto Fourier -transform magnitude information it. in general, a

r~s- .N~~m.0 fom -01 . Ml. nontrivial problem. it was hown that for regionia of support
r~ftg-mN)x~m.) for -O...... - I. that have certain geometies. the boundary values may eaily

be found. These geometries. in fact, represent a generalize-
However, without any additional information, no other tion of the conditions necemary for off-axis holography. An
boundary values of z(m. n) may be determined. Ifon the example illustrating the rocersive, phase-retrieval algorithm
other haind, there ore two point sources, one in region 11 and was presented, and the im of the numerical stability of the
one in region Vill. then the complete boundary may be re- recursion was briefly diacumedi.
covered front r(m, n). More specifically, consider the two
point sources shown in Fig. 6(b) that are located at (mo, N)
and 4M, no). If these point sources have known intensities. ACKNOWLEDGM[ENTS
then it follows that the first row and the rust column of x (in. This research was supported by the National Science Foun-
n) may he found from r(m, n). For example, if the Point dation under grant ECS-820793 and the Joint Services
source. are of unit modulus, then Electronics Program under contract DAAG29-81-K-0024.
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THE REPRESENTATION OF SIGNALS IN TERM4S OFp SPECTRAL AMiPLITUDE*

.H.oHyes

School of Electrical Engineering
Georgia Institute of Technology

Atlanta. Georgia 30332

ABSTRACT specified in terms of its spectral amlitude or.
In most cases. to within a scale factor.oy Its

in this paper. the -Importance of spectral spectral angle. Aithougn this uniqueness result
phase and magnitude is examined from a different may be easily eatented to discrete samples of
point of view. In particular, an emplitude an" spectral angle. an arbitrary finite collection of
angle based representation of spectral spectral amplitude samples is not sufficient to -

Information is developed. Wdith this formulation, uniquely define a causal finite length
a causal finite length signal-is uniquely defined Sequence. Nevertheless, sets of N spectral am. Vo
by its spectral amplitude or, to witttin A scale plitudc samples may :&e found which provide a
factor, by its spectral angle. unique characterization of a causal sequence of

length N. Furthermore, if Nf is large enough, the
spectral ailitude of the N-point OFT of a causal

INTROOUCTION sequence of length h is sufficient for its unique
Characterization.

For both continuous-time and discrete-time
signals. the magnitude ard phase of the Fourier
transform are, In general, independent functions, SPECTRAL AMPLITUDE AND ANGLE
i.e., the signal cannot be recovered from know.
ledge of either one alone. Wi1th the appropriate Let x(nt) denote a one-dimensioral sequence
a priori constraints, however. it Is possible and X(..) its Fourier transform. Fkr either real
that either the spectral magnitude or the or complex-valued sequences, 1(w) is generally aspectral phase may uniquely specify a signal. comples-valueo function of w which may be
For example. when a signal is minimum phase or written in polar form In terms of its magnitude
maximum phase. t'd log magnitude and phase are and phase as:
related through the Hilbart transform. For dis-
crete-time sequenes, it has also recently been 1(w)*IXwepj,(3()
shown that a finite-length sequence is uniquely
specified to within a scale factor by its where the phase, * (w) is defined by
Spectral phase assuming that the sequence a 1contains no zero phase factors In the form of #,(w) - ton LIMu/L(w)) (2
conjugate reciprocal zeros (1). Unlike the mini-. I
mum and maximum phase constraints, however, there and assumes values within the range [-1. 11
is no dual statement of uniqueness between a Note that, In adasit ion to the value of the ratio
Sequence and its spectral magnitude under the N.zw/(l knowledge of * (w) assumes
Sae Set Of Conditions. In particular. for any that the sgn of li~w and the sight of 11(w) are
finite length sequence x(n) another finite length known for each frequency. therefore, Since
sequence with# the saws spectral magnitude may be
easily created by the well-known procedure of IN(U) , I1(uI cot 4'(V) (3a)
*zero-flipping* (2].

In this Daper a different representation of 1 m.I(wIin*w) (b
spectral information is investigated. In parti- knowlelge of # I*) implies that the hard-clipped
cular, an amplitude and angle representation of versions of I I*) and I (w) are known. It is
Fourier transform Is developed. With such a the Set ofq "Iero-crlssings' of I (w) or
representation, a causality constraint is suffi. of A (w) which provide a key Piece of iRformation
dent fOr a discrete-time Signal to be uniquely about K(w) and, consequently, about x(n). for

CThis work was a Supported by the National
Science foundation under Viant ICS-8204793 and
the Joint Services Electronics Program under

* ~~Contract DAAflI--002a.

-3-t



PSAmple, it may be Shown that lX(w)I along with a unique solution. Specifically, if x(n) Isa
the "aero crossings*oI(w provide a unique finite length sequence with a i-transform X(z)
specifiction of 4 ile duration causal which his zeros at 11 . ... 7 theft by replac.

sequnce.Ing any one or more o these zeros with their
Instad f dfinig te pase f 1a) s j conjugate reciprocals, iLe.. replace the zero at

(2)stwhic prsfe ktnnowlede ofhte eo 1(w as n . with one at I*1Izk* then the resulting se-(2). w i n prsue knowledgeof that he phse. quence will have the same spectral magnitude.lngs oX()anX(w supsthttepse Although zero flipping necessarily preserves
of 1(u) 4~ defined V0y taing the principle value spectral magnitude. zero flipping must result inof the arctangent function in (2) so that It is a sequence with a different spectral phase. A
aconfined to the range (-v/2. 81Z) .Furtterriore, question of interest. therefore, is %nether or
let a Mu be used to denote this definition of not zero flipping results In a seqtience with a

th As f1u n e srfrdifferent Sp~ectral amplitude, Without some add-.
to i astheange o XC..).hol tht C(w) and tional information or constraints, however. this

itn#( Iare-equivalent pieces of Information is not always the case. For example. consider an
about"XAul. Therefore, let A(.) be written as arbitrary finite length sequence x(n) which has aspecral ampltud givn b A,(w), Wit
X~w)*ll~w)I eap~j*(w)Jn-x-) nt ha h spectral mmplitudes gieof 5  i Wt

y(n)ad (.n) n ate ta the Secta mnagitudesthf
-IX()I ep tjx~w #x w) J(4) spectral phases of ala) and y(n) are related by:

-A()exp Eo(w)] 3 *,u 7

Consequently, it follows tnat the zero crossingsL
'a ().'K~w~eap~s1(..I~lz~~lsn~co *1 u)]of the real parts of tne transforms of x(n) and

() y(n) [the frequencies for which the Spectral
is efiiedto e te mpltud of1(u. Nte phese is equal to t v12] are the Same and,is dfind t betheampitue o X~). ote therefore, that the spectral amplitudes arethat # (w) In (S) is equal to zero or v for identical. Causality, however, will eliminate

each xi~. tan (# (w)]-O for all w . More this ambiguity and, in fact Is a&sufficient con.
Specifically, # 1w)-O whenever # (w) is within straint for a finite length sequence to be uni.
the Interval t~-,2 ./2) and" it is equal quely defined by its spectral amplitude. More
to i otherwise. Therefore, the amplitue of precisely:.
X64) may equivalently be expressed as

11(w) i -'2(e(w)w/2Theorem 1: If i~n) and y(n) are causal
A X4) If) -12 a~)< finite lenfgth sequences and if ,wAyAw(6 for' all w. then x(a)'y(n).-1X(w)J otherwise

Note that there is now a duality which is Similar
Thus, spectral amplitude contains spectral magni- to the duality found in the uniqueness of a mini.
tude information along with one bit of phase am phase sequence in terms of its spectral
Information. i.e.,. *1(w) magnitude or spectral phase. Specifically, from

Theorem I above and the uniqueness theorems con*-
finally it Should be pointed out that cerning signal reconstruction from phase, the

whereas IX( w)l is a cgntinuous function of .. foloin coolr is no.meca
AIMu is discontinuous at those points

where # Mw passes through t v/2 *i.e., at those Corollary 1: A causal finite length se-
frquenles where X (w) passes through zero. quyenc-e is uniquely defined by the amplitude

IThus , A C) contain& information about both the of its Fourier transform and to within 4
magnitude of the transform as well as the zero scale factor oy the angle of its Fourier
c!rOSSingS of the real part of the transform. For transform if A(z) contains no conjugate
example, Shown in Figure I is the magnitude, reciprocal zeros.
phase, amplitude, and angle of the Fourier trans-
f ormf Of a discrete time signal of length Ni-4. Note that although Theorem 1 is founded on aNote that, as defined in (5). the amplitude of specific definit'on for the amplitude of the
X(w) is discontinuous at those frequencies Fourier ransform of a discrete-time Signal, it
where 9 (w) - t v12 avid Is negative when the is possible to adopt a more general def inition.
Phase it outside the interval (-*/2, v/2). Specifically, onte that the Spectral am'plitude is

defined in (5) tr be equzl to its spectral magni-
tude when the phase is within the interval(IIQUKu(SS IN WEAS OF ANPUDE INFAMTOl [-'/?. */2] and it is definoed to be minus the
Spectral magnitude when the phase is outside thisAlthough a IFinite length sequence which has inerval. As previously noted, with this def lxi-

neo zero phase coa'ponmnt IS uniquely defined to tiOn Of Spectral amplitude, knowledge of thewithin a scale factor by its Spectral phase, brelitude of the Fourier transform of a signal is% spectral magnitude does not place enough equivalent to knowleoge of the Fourier transform
constraints on a finite length sequence to Insure Magnitre alon;; w-th those frequencies for which
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the phase of the Fourier transform is equal to .4a1ul v, Shkbioo v) is sufficient to distin
one of two Possible values, t V/Z . By choosing guish am) from yin).
other values, different definition% for the am.

plltude may be obtained. For example, let w be Thus, although a given set of Samples will
an arbitrary number within the Interval (.? v) not lead to a unique specification of a sequence
and consider defining the amplitude of the In terms of spectral amplituoe in all cases. it
fourier transform of a discrete time signal as: may be sh'-,w. that a finite set of Samples may

always be found which provide this unique speCd-
Sif W04a fication (4). In particular, any causal finite

length sequeice of length It may be uniquely de-( IX(w)l otheraise find by the spectral magnitude of Its M-point OFT

In this case, knowledge of A (w:w) is equiva. provded N is chosen large enough. -

lent to knowledge of the magAtudeoof X(w) along
with the frequencies for which the phase of 1(w) RECONSTRUCION FROM A1PLITIE
is equal to either .O or w ", hote that a]-
though Theorem I considrs* the case for In this section, the Problem of reconstruct-
which it may be shown to hol for al Ing a finite length sequence from the ampl tude
values of wo ecept for wdoU . Specifically. [4) of its fourier transform i% addressed. As pre-

viously discussed, a given finite set ofCorollar, 2:, Let x(n) and y(n) be two ompsituo ape snt!vassfiin "-
causalm fIit legh sqecs ltoe samples Is not always sufficient to

Causal Mnite length sequences. if uniquely specify the sequence. in this section.
A (:w )-A (w:w for all w with w*Ot then however, It will be asSumed tha. the unknown I
4nj-Y~n)' sequence, x(n), Is zero outside the Interval

O,0h-Ij and that the amplitude of *ts P-po'nt

UNIQUENESS IN TERMS Or AMPLITUDE SAMPLES OFT, AM(K), is known and that M is large eouen
to insure a unique specification oi x(n).

In the previous section, some uniqueness motivated by the iterative algorithm
results were presented assuming that the spectral originally proposed by Gerchberg Pnod Saxton Lbj.
amplitude of a finite length sequence is known an Iterative procedure has been used in the re-

for all frequencies in the interval [0,2w). In construction from amplituoe problem.
the case of spectral phase or spectral angle it Specifically, the problem may be viewed as one in
iS possible to generalize the uniqueness results which some signal constraints are known both in

to the case in which spectral phase or spectral the time and frequency domains. In particular.
angle iS known only for a finite number of dis- in the time domain x(n) is known to have Its
tinct frequencies. Specifically, it has been support confined to the interval (i.N-Ij and In
shown that for a finite length Sequence of length the frequency domain It Is known to have in M_
II which hat no srrmetrit (zero-ph~ele factors in point OFT with emplituce At(k). The iteration is
its zotransform, any (h-1) samples of either its thus characterized by the repeated transformation
spectral phase or spectral angle Is sufficient between the time and frequency domC~n5 where 'h

to uniquely define the Sequence to within a scale each domain and at each step in the iteration the
factor ji). Unfortunate'y, however, a finite set signal constraints are Imposed on the current
of Amplitude samples is no', always sufficient to estimate. The incorporation of the time domain
uniquely specify a causal finite ?ength St. constraint is straight-forward since it involves
quence. For example. conider the following two simply a windoging operation. There are several
causal sequences of length 1.3 alternatives, however, for Imposing the frequency

domain constraint. Specifically. with a (n) the
estimate obtained after 9 iteiations,

y~n)* lZa~) *2.b~n-) *l~u (n- ) lot A (k) be its P4.point OFT which has an ampli-y(n) e 1.26(h) * 2,b&(n-1) *I.U6(a- ) tude given by A (k) . The frequent) domainConstraint to be' placed 00 X.(k) IS t',e known

Since y(n) IS obtained from x(n) by flipping both constrai toe pc n A.k) i ,e known
Of the zeros Of X(z,. about the unit circle, both ptal plane, the OFT of (n)i S thus €onstrne-
a(n) and y~n) have the same spectral magnitude, pt le, the OeT of a ne t th rned

urhrr, inteitra (, ) th rel to lit on the semicircl& defined by the inter-
F urthermore, in the interval o . v). the real section of a circle of radius A (k) and the half

part of the Fourier transform of n(n) Is equal to plane of all positive real parts it A.1 k)>O or
zero at only one frequency, w ".417UZ3 v and the the half plane of all negative real parts if
real part of the Fourier transform of y(n) is Ahk(O. Thus, the kno n amplitude iaposes bth

equal to zero only at W-.52oIto 0. Therefore, a magnitude as well as a phase Constraint
the amplituoe of 1(0i 1 equal to the amplitude on X (k) . The flexibility in incorporating the
of Y(w) for all w outside the intervals amplitude information lies in the NethOO by which
(.477023s. .526bb6) and (-.26lobv,-.477023s). the Phase information Is imposed, Since there Is
Consequently, an arbitrary numter of amplitude no reason for altering the phase of 1lk) if t,
SamIes withn this region is not sufficient to lies within the correct interval, the only
distinguish x(n) from yin). Note. however, that question is what phase should be used
One simle of the Amplitude within the Interval for Yak) when the phase of XA(k) falls outside

.......... ..-.. .. ... ". .... . . . -. . ... ." .,. . ...3



the given interval. One possibility IS to set H.

the phase to zero if the Oas* of 1(k) Is knowh
to lit in the interval [-'Il. W1) ano to Set It
equal to I otherwise.

Another poisfbility for incorporating the a
given mplitude Information is to set the ampli.

tude of eq(k)eual to the known MlIftude.A,(k)- st -

AzoI(k) • Ax(k) (10)

t1th this approach. 1(k) is scaled so that It
has the correct sag it~de end then. if necessary. .
a phase of v is added to I (k) . However. if the
real part of 1(k) iS Clost to zero and the sign
of the real part of I (k) differs from that of
X(k). then the irCorp tratlon of the amplitude
constraint (10) Vill significantly increase the .
error between X(t) and AI.k; . Another possi-
bility, therefore, Is iv simply scale I (k) so
that it has the correct iagnitude an tien set
the Sign of the real part of X41*(k) equal to the a
sign of the real part of 1,(k)

V1th either of these last too approaches for
Imposing the frequency domain constraint, the
Iterative procedure has been observed to ,
converge, in mOSt cases. to the correct sequence 3.
when x(n) Is uniquely defined by the amplitude of
its N-point Oft. A theoretical proof of conver.
gence. however, has not yet been obtained.
Although the number of Iterations required to A(.
reach a convergent solution is In general very
large. this niler tends to decrease as the
length of the OFT is Increased, a
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Abetrest
to this research. the algorithms to be

?his paper presents so.e etaile at a implOMented are all described using . g*n-
maew forselis, Mhck allows for tI.. elsel- trelited flow graph representation. As ts
taneous description *ad manipulations of Illustrated in Fig. 1. a generalized flow
both the Orithstic and Implsentstlonsl grs;h to a directed graph in which all
characteristics of Digital Signal Proces. operations occur at too nod*. and the
sing algorithm*. This foresilsa leads to branch*& eve used *nciualveiy gs signal
procedures for the automatic end optimal path*. The genoeAlzed flow graph is a very
ieplesntetione of a large cloe of e~go- Powerful representation which. if proerly
frlthas based en both 331'10 Compilation applied, is net only capable of describing
techniques and rigoro systolic derive- Ouch traditional si9fgl flow graph etruc
ties so well as Combined sppeoches. tUres as digital filters and fost tran-fc

faes. but ala. suck nonlinear structure*
Iptcod'qt~q~ 0 thoe Involving deciation. interpela-

tion. hooserphic processing. and a large
the feedawenttal ge of thi, research class of saetna operations. In apddition.

10 to develop Methods 4ev the autoatic ano by Allowing the no* to be iou, level logic
optimal realizatict tf aLarge clase of Operation*. generalised flow graphs can
blgltal Signal ProceeIng (DSP) algorithms oleo describe blt-oanlel. byte-serI.
an aynchronou. multipvricoeors cooposed of end many other distributed arithmetic
multiple. identical proiresable proces- structures.
"o. This resarch 60eela to fin~d the coat
efficient Poolmle olution.. In which the Afly sgli~ legah a

""O mle aynch'any of the aye mantains generaiized floe graph is which the node
tdata Preceenc relinst aim hc operations ore alt fundaental operationsIa. cycles of any of the processors are used of the constituent processor on which the

for system control. 03P Oigorathsa. 06 Velgrithm .i11 be Implemented. The defini-
class. are uniquely Well GAuitd te this 0 lin lf the node operations inb the fully106:1ao bo:th Ibecm nof thi opue pCifies floe graph set* the granularity

t Ia in t it an because of their high with which the poellellas Can be en-
level of internal structure. visited. rpeneric floe graph* arg all

thoe gfsle ie grw h w191.,hich do not
This research has both a theoretical estteConito to be a-C ful lpcfed

end an emponimentaL Component. In the them- flow graph. In general, the node* on gen.
retiosi component, a unified formalism hao eric flow graph* contain macro operetiona
beg developed which le*.& for the @joul- which Invoive Suitipie, operations of the

ta "au decriptien and *siplltion of constituent processor, Typically, a nmeber

Charcteistis O the619riths. his can be generated f roe single generic flow
formalis has been used in turn to develop graph meg0 Fig. 1).
ee0nlnfel~ definitions for eptimelitV and
to develap algorithms far the efficient l ftmkj g
automatic generations of optimal mutti-

proCeao laleanlalon.SI-P. n te -Given that OZlY One PtOC00or type 141
enperimet:al cosPennt. a synchronous to he used in the eventual multiproceeot
Iut -irpreSMAo comper and operating isplesanitlton ando gloss that the charar-

system, have been developed 44) ne, a .- %arAstic0 Of tbis constitwe"t processor arep plier which generates optimal multiptaoes hnownt. then it is possible to compute
marloipieaantstione for signal flow graphe boundLs On the synchronous multiprocessor
hoo been demnstrated. the aultiproceasor reiato of s uly pcfed le
system a0 fundamntll IF veaemr;ch tool graph, Two beunds are of partieular inter-
whic is 1 inaubein verifying and &ug- eat, The first bound, called the sonpj
a4,11tingl the theoretical research. _Vl onj novs h JiRm5sln

litIlgA ae-ste&nsse~ln



versed at mhich 6 Particular ailleithoa*
as implemnented going a porticulag COOn-
etit4-int recoea4. The sample "goiod 000 perticularly Interesting approach

bea sbat wdrata ntecn~tS to thM flaw graph impiemeatstiom problem
* reourai , -igtAe'idon f9ew graphSa lnevee the age of 331pp (Shows So"910

isuCh as elk ZIE digital filter). although Imatructiom Multiple Dotal realigetioasi
the cencePt Is ala. meaningful in systems 41. Ihme beac 5mIND concept be illustrated
which hove mo explicit sampling period. by the efesPlo Of Fig. 2. In 33tND. OXOctip
For ouch systems. the AmAPiV period bound the ama. program to executed a. each of the
to given 1Oy Processors 10 the Multiprocessnor end that

program toeligam ewectip .me tise-iteratian
at the flow graph. Im Principel, a recur-

Ta N AN[ d Inp slopw flow Swept, soch me the third order

where p vareseve the met of all loops in u; s&OIeain tteegrt

th:flo grph, 1:4he ~thet deay obe. wee, there eampe.ern3) mat val-
Init teew loo lon aa thtiqac r

':d ~ ~ opue ,:e, 0 ~ 1Oereqr.Ted hefor pi nt er

Ideay ""so :. s the '.naw Tim ra- "ntakRefov ite Ime ony ao sin priculsori
quitrd betetheaaifilt Of a eutie Ofpa proga wad there itoer ROeat*r tele-

Montae and tueee~ino f h 45o. tirne are. wellbowng soehe e f.em a
reapnoaup ouput acp~. t del cobopdte In or.e2. to% poe Point heer.n

a gvftu . Tbo1 inmmtm e th iacie, rre ed feod tgyther.tculn
ev-i~ bi itp of n i put pr e me er a n d s ttuent untcel sr .ce ".o s:

pU!" b~t"~k: ,o fteCT iei the optkos Ne. ri. Rather
ffemonon utpt sep&. Te dlayboudprown to Fig may bego Protsor executtienga

to ger byeteaihetcdlh h the eame he pat r wc itogter thaand
peth p.sand pincluds .lh ooproreepath tha nee- d wslet untiel bprthesstimeIa MIN th Ipu he th outut Coplte ttie itptolm of widedt

hw Per deeg.in te coprtarion o11 goal tMearth-r
m~etiCoprIoma begir am* comptaiit at

w thimoreStotheantteoethet41?I teearbtebu the eaelias noies are whctti rana-o
peath er. aFoodVices wihfilyef loo ede ah tatrme itol 11b impt-olo er byn thime
frlee grehe. inu.t ei oututed in this. It the 00.3 4u10r11.te la gap
compiffteatin flly apacift led flwue grpto oe h onuictoamrcwei h
roe :i:ton folr teman genri flo SJ1NO r priato ram aln o the rem,

grep mmyhawaquit diferea boud Mtlt Oeaions apea asg *oiptic&&I l-I ea. ire aotat tm fnditg tat thme stwe mehlwbutfo thlrd Morder m e:-olealsOon insocived whianthet fully tieom.eacInt ipuommer oe&. tn twr
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Likewis. the sasisuemeeo &I ptecoofeo oth program& dew the aensttust, peope&-
which con be Wsed to edwetgeq AC as 5MIND Saes.
realiation to gives by,

TwO 9lbPORtent POINAtO abbsl ba me"
Mo. My osmersting this SUR30 compilter. first. as~ previoSly1 aentlonod. &to application is by

wpare T to the totel duration OF all tow GO means lipsiled to the lebeeistary awlti-
eperstiAO ain the program car. ""&ivotes%- Procesor around Which it "ee developed.
IF. the flew graph) A"d r-I to tile sod it can @eeto **star be uoed to top-dow*
ceiltmng lunets. doeign System@ means 011cropocessers. sil-

001 proCSe~mfg Chip&. or VLSI fooavastion.
The 53133 approach to flow loreph, real- Seceatd. and more important. is tile result

igetloed a0 very attract$.* for beer too- tilat at a rate-opti.0 53iUP solution em-
some. Firslt . fr al1 2313 Ceulisetic.o Mn &at&. At to Oery eseps to find. "tateo
-hich the Rusher of proesors is loe soother way. ile Information availle freet
them a . tile Sapiese-tetiondseae processor- the COsPULetLo.0 Of the gloe graph bounds
optimal sod the wo of processor*a lwase define* me precisely too character of a
increases the through-pust by a lector of rate-oot&*@i solution that At. I. very a&*-
*ecar a froltive to a singl* processer via to teot whother an optimal 33189 mels-

Ampl~sn~tle. Scond. when tile 351110- ties Ouiets and to flad it it it dome. Is
blond is equal to the meeple peried bound. Contrast. finding the best sb-oepts
as as tht come for the 00jersty of roeur- solution in Ouwk mere coupetationsl Iam.
&IV* digital filter etretwree. thein there tons*. %once mo here the peredns that the
0.st. Co sultipreeae solution sa1ge the meet defirshle *VoptSe mmlatioft se the
somo consetituet praceseet which to f*star **aet to find. &at they sew set sl.ee.
or mere off icsn. Tirld. although the au.1st.
aaSPle-poeiad-beued concept ie not i5-
eulved. 315 rgelizag.. -or% equslip It er
well for sen-recuroi%oa trcturee. Finaelly. i
and seat ispeatat. the oii-iuportest con- 33230 ropreaato an possible highly
esications mochltectuge for the f tel conetstimond approscl to ars ~oftsm Sawt-

* .ampleeoatothae, As completely, opocified of processor iooontothoee. Anothler highly
the delay mode structure of the I 1ou graphl. constrained eppreseil is that defined by
to perticuler. by cosatraimieg all tile aretali6e rror* 17). Is 'A@e rarest pest. a
eater modes to be I irse order. oil *&Inle.i large number of systolic 0leorith,, 55,,

Ciehduf-heehei 53 olutions appeared in the litoeture. For the moat
com be reliamed with a neie-e ba parlt, theme allortiks here got been de-

* usidhrertiosal ring tos imiler result ep- rived or preyed io ny ep Frs way but have
V Ile* to 2-di9sneomelo tie gsp"s). No- 01i1pl bee preesned- witout. cereal
ever. At 0011o COOpl.. ,eesusicmtio%* ore Verficatlent or proof. one of tile reeQlte
available. then thle Flnew graph con be de- of the applicetion, Of our formalism to
fined to tab* advantageoef I% feve fig. 2). opetelic *rates* has been the developent

of -so& ef cigorous rules fet the derie-
t~in~j3Dge,&J~e oe,; o sstolic ifrests e re fie.

Sn ptiel 53233 compiler 9ee 9.91lP
OpOAISlf 1 6ed siqn1 flaw g1180144s boa.ee do- Two single-tima-indom stts& are, bid,
Veisped fet our laboratory eultipwocoor to be seaestiptly equityeft At givent the

* COGOpute .. A block diagram for the muti. sae input sequo"Cee they elegy* give the
proesor compiler is oso tn Fig. 3. 3% somne Output ovquoncee. The oystolio derive-
the first step, tile Qs9piig-period-beuntd tLieon 1 rcedure to boo"d cm two theorems
and delay-bound erg coeputed fee the al. coscermlng the aesssieal seulvmlae of
na1 flow graph fot tile desired constituent eysems described by flow propose.
processor. Although the actual reeaiiSton
nave 0li bean tested e&". the LSA-3l con- TNS.. D4A 43fn~5~~~ ae aOl f a
GAiuast processor of the slircso inls hf nain ytm prtn
Computer. the compsir *&A. 6e simply Con- Oft J, &Ovate deate ee is aseetlill
Figured to compile see ear appropristo equivalent to a single &yotes for which the
PrsOOma..,. 10 the seon atop, the in9orme- 5 sale 0f leputo end outisto hoee beo"
tis derived As the figst stop is used to interleavoed 6as On rdered st end the order
do 6 highly pruwnad troe-Coerck t I lee a of all the doloy n0des is thes flow graphl
Tt reaOptimal 83130 solution. IF it *nats%. hao bose suitipled by 3.

IF 5 rto-optselslet is mot found.
then a sets estonsiwo otree-easea is per- CQftOtLA*?Il a shift Invariant sVates is
formed to lind the beet iloweet 55130- 61luere essetially equivalent ts a shift
boundb solution. Tilese 313, goletligne can- inVsriunot syemo where tile ispot ha5 been
aiat of legal ordering. of the glow graph upo-oospled by M. the output hoo been down-
oper*tions. theme er% used as input to the 00splad by P. end thle gow~e of sl the
Fine& andeo-genratis step whichkaatu deay nadge ils beemsomliplied byN.



ties. moasly a trelsguler areteo Se I.
1 "uot C1tgt o e0f0d of that sot The point of thie *aeaple so to &Iluetiot

edc breaCh.. which are Out whena 6 o16004 the w@ *I the systolic derivtlom proce-
ur fae is conetructed holde* f lw grepk dure. on a imple syste hich i mot a
in *uch a way that it pOOD throuk me digitel filter. Fande6entslly. this GOT&.*-
PodOs. ties A. aer Osesler to that *f the recur-

i$w !star. and it is simple to undereted
TI + .Lly. TSANSrOaasITosI lHi01 the required interleaving or the date.

Aay shift Inveriant flow graph is me-
leitisljy equiveleht tO a flO aroph which QRkiI.fl L*LI9AriA flt
to forald by addig idel dolef (edwen-o
1node to all thle Sput branch*e i a nlodal 5INt ad *yeoil* arroyo are tO
cutet end eddl

i
g Ideal Odvance (delay) etra** approach** to solving the eynchro-

nOdes to all the output breanche Is the now* multiprocesseo imlomentation problem.
&&s* model cutst. The fundeseotel difference In thes to

eppresthee Is staple to waderatnd. Ia the
The eppllcation of the" theorem sO i1 SSI6 Ipproech. tJ lgorathe & s first
luetrated in It. 4. fully dietributed In tics. ance a seperote

timc idx leis asigned to seek proceseor.
Tho wsy in which theme to theorems Tha the iaplementatio plltlty mope

0cmbe god to devce systolic algoritilc this lice dietrbtIon Ante *pace Cse Fsq.ire. fully pi.ed f.ee . reph. is lily•- 2). in the syetelic epproach. the ellor-

troted in Fig.'s 6-?. a (udaeatal can- ithe are eere dietrsbuted directly La
Otrelat plced on systolilc rroye in their spece. Clearly, 5ig. s-7 illustrate that
deflaltient 4 Chet the tro.4ter of dt e a sytolic derivetlon can be coneodered se
betoen cello cuet be yVnChrOdiiaed, Tae c direct partitioels of e fle 'rITi eing
treneletea Into a fle greph Con t 0ri& aewlrci procaoere.
that ewery swtput breach frow a cell muat
be t rnatd :) a deley Rode (pipella when compared directly to syetolic

regieter). Wler.c. the qeneratlon of sys- rray Seolution*. SSIND has peny attractlv
tolc solutioa* for flow greph* reduces to features. Whereas systelic arrey con Sel-
distributiag the deley modee throuhout the doe achieve the emople period boad end are
fJb. graph Co thet thie condition be et. only pfO¢eOo-Optucal for speciel cese.
n thtseapls period bound SMID to elmost aelway procesor-eptiml
far static FpiFloc 6) is used to eter- end sloe is oftm o rt*esoptisal s well.
mine where the delay mode& QhSlid be ledIs lthir techlqe e o.fte, deley-.ptiaaio

tributed. the requIred intLr leaving fector. $IND gIlac It edvantage from the fsot
ad the eppropriate nodel cuteeta. thet by viewing the problem in the tio

.referene of the indlvidual procesor*

Fig. S iiiwctrstes 5 syctolio device- rather then the refevsece of the Syetem
io fotr :n ris filter. Ia the ewomple clock. a lemialsly Coeple tling problem

ahown. e proceeo r-optltel lplOewaettiOn is tris l arvd into a retively sitople
is al..ye ettelaebll et .1 a plln period ttsing problem.
Of 1 ulvtipi * I edd Itll. .ed C posily
noe-proceasor-opiiall lplesontolion I O Put to acke comparleoma of this sort
attaineble at the aesisuw of I uiply or Is to aies the meet fundscental point. That
One add tie!. Clearly. If the 6lthoeotic is thet jh tj jwq fgp btq f 9 t " g,:

*"eration* these~lves were pipeis.ed. a. %W1tj2~ Vgcbtotd. From the point of
cIght be the ceo. for a lw-1sel micr- liew Of 33IND derivatlene. the proiLlee so
06od procosor, shorter samplaig periods that iP me rote-optlaal solution existe.
Ore possible. thea the best ecb-optleIl •lUCawbno erg

F diffcu lt to find. However. if the opere-
Fig. S llluntratee 5 syatolic derios- tionso 1i m elW le ties inds. so be dilett

ties for en fiM filter. It ehould be Cler bused ecross several processoro. then eptl-]r free thie ecample thet en up-oaspliag mel clutiao (rlesotisel cad deiey-
trs~aaration s b.e e pplied to generae o ptissei l earsy gilt end Ire treltlelvi

any syelic solution for • recursive eye- etopte to find. The oddity here is that If
toem this syet.. operates on one data esly sOticel elutioms are ought, then

etr*& at tice the Asapie-p*rlod bound sId fewer operetlola et& required to find the*
wIth fifty percent processor efflclency. If then if Gub-optimel aolutlone are reired.
5 eceond dst:, 511cc were Twa1lcbl. tha Tls epproach, whach he been Called 3IRD
t eould be clear free the date steree 4Peraliel Skewed Single instruction multi-

theorem that It could also be processed pl Deta in the pest. Ouftlet groe the
siseltsanewely roulting in • proeseor- problse that the communications areh-
opIleel impieeaotetioa. but still ct t-lCe tetLare te Pot me eetIy controlled a. to
the sscple-perio bound, the SSND Caes.

Fig. 7 tllustreteO the drletin Of C There go clearly mo such problem is
Cyaelie Smplememtstion for a eatria olOr- the systelic derletnsne. Indeed. the on-
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aui~in vor-costrair. apeteile Otiso- Symchbo s uiti-sicei rocoesr Syet*@ got
terms. The problem with oytoio arroyo A5 Isplo*@nting Pilling signal Ptecassiog
tj~ they kikeS been arttitsttt %I"- algoithm*-. Of on";d
#trained job rwquiinfg that the c'PMsuhIc6- Florida. Parch 1962.
%ions be done In synchcoflt. VNISOMVeIICItI7
dissilows the 1fieilIt IPKiest in tse4- S. P. Penfore eod Vr20 PuglO. 'The Malovieu
skewing.. 9.00-601 this restric*i0n alIOws sampling note of Digital Filters Voider
for the distributioh-Ifttive technaques werulue Constrains.- IngK 1Kl04l1uve go
esplotwd to SSIND to be coebantd with the Clitvll tot 91111se. I-CeS. pp. 196-242,
systolic derivetitrne for move efficient ad Morch iP0A1.
higher speed loplweetatioefl. Fig. 4 ill..-
%rates this principal for the simple Cese G. 0. A. Schusrta an *P barnwell III.
ef a third order *actionm. -A Graph Theoretic :.44ique gar the

Generation of systolic lspieventstsono fee
Fig. A *howe two epec*-time ee- Shift-iftleuisAt flow Grophs5. 3202

signsests of aix processor Ispiementatioas I'flgiglig1 C9fitiit to ftcqVOL2.
Of a third order ao~toot. The roffiletiol 70rh 10C ViY"01 rigcgiethog, 30 Dieg".
shown 1i. Fig. 45 is PrC~COsSOr-QptLmI*. Cetlfornie. march 1984.
delay-eptieal. and fete*OptkoeL. The sitar-
note rvatiastion shown in Fig. sb to pro- 7.C. C. Leisorson. #tg. 9ljCisuL VLU
c*enr-optIea.. wot*-optimai. and require& SVR M9 HIlT pross. Ipsi.
snly feeotest eig%bdr communlications. tot%
the resigation* Of Fig. S end the 531"R
rvslizetions of Fig. 2 or* esaspies of
oraio-etatia pipeline eolmtions.

The concept Which unities the.* two
disaelir spprafcee is -hue techaie*e
isoes to digital filter theory as
blocking'. When a flow 9o Pi 10 "Ilvckvd.

the basic flow graph is modified 00 86 t*
peoces* blocks of $at* rather then single
dote Poitt. The votl-etios $Or bioCh
filters in owe content ts quit* di48SAisil
free Other epplicstiois. In particulate*c..,,e
blechin" gs a way of explicitly Including
"oerations from different time indicie iO
the seae fully SpecifiLed f,*w gtaph. Whet.i
fitters Or* bleched Is this w*I, arid tis-
Skewed delays ore allowed. then 3SIND a"d..in S.

ether cycle-static "swtionse ooeilabiC ,
*froe systolic deri~etloul technique* snditESO
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Rigorous coupled-wave analysis of grating diffraction-
E-mode polarization and losses

ILG. Mobri. aed . X. Gaylood

School of £laj*aI Erigimet. Georgia Inatinot of rechrolWgy Atlana. Georgia 30332

Received Aqwd 21. IM6

Rigoeois coupled-w--a tnaaey ri diffraction by dielectric gratinge Is etandod is ceu &-mode polarization and
looaes. Unlike in the H-moad..polarization ase, it Is shown dtat in" the mde cs.directcupling exists between
all diffracted orders rather then just between adjacent ordes.

INTRODUMfON The planar boundaries of the prating are perpendicular to the

Optical diffraction by dielectric ratings baa been the subject adrcinea=0eda-d lhuhE.()rpeet
of extensive, sustained research for many years Fields of the particular case eta sinusoidal perzaittw'itj' other grating

profiles can also be treated. The eedromagnetic fields, inside
application incude scottsto tics. integrated optics Quo.un lnrleydeeti rtn ihaaai~ ayn ea
electronics, holography, and spectroscopy. Grating-device aw pnr nitiiy iegvb ectoigatn wave euations v arineda
functions include laser-beam deflection, modulation, coupling. diverectiiy fro givwen yvoae equatios.Th eletrc-i edo
Ailtering, distributed feedback, distributed Bragg reflection,. ietyfo awl' qain.Teeetkfedvco

holographic beam combining, wavelength multiplexing, wave equation is

wavelength demultiplexing, and others. X
A rigorous coupled-wave theory (without approximations) n--jkzanO(3

has recently been formulatcd for dielectric gratings.' This
analysis applies for incident light of H-mode polarization where E is the electric field, Ox. a) is the periodic complex

(electric field perpendicular to the plane of incidence and relative permittivity (dielectric constant) A - 2wvA, and X~ is --

perpendicular to the grating vector). ft is the purpose of this the free-space wavelength. Similarly, the magnetic-field
paper (1) to show how the rigorous coupled-wave analysis can vetrweeuains
he extended to treat K-mode polarization (electric fid in the x+ 'cxaf.0 ()
plane of incidence and in the plane of the grating vector) and 2+ XVXa+h2(.ON-0 ()

loey gratings, (2) to show that coupling exists between all
diffracted orders for E-mode polarixation (unlike thema for where 17 is the magnetic field. These general wave equations
H-mode poisriat" in which the coupling is only between may be considerably simplified for particular incident wave

adjacent orders), and (3) to compare rigorous E-mode results polarizations.
for gratings with arid without losaes with previous approxi- H-Mode-Polarization Wave Equation
met* -mode results. rigorous H-mode results, and approx- For H-mode polarization (electric field perpendicular to plane
imate H-mode results. of incidence and perpendicular to the grating vector), the

electric field in solely in the y direction, and so ESK, where
GRA~~~~iN~ WAEEUTOS9is the unit vector in the y direction, Because the electric

field is perpendicular to the grating modulation vector, then
General Vetor Wave Equations 11 Ye vt 0. Electric-field vector wave Eqa. (31 therefore re-
The loasy dielectric grating is characterized by a relative duces to the soalar Hlelmholtz wave equation
peruittivity that is periodic and is given by VIE + h 2az )E - 0.(5

eiz. a) 0- coelKtx sin # + x coe #)1, (1) This is the equation that is commonly solved In the analysia

where is is the average complex relative permittivity given o ilcrcgaigdfrcin
7.by E-Mode-Polarixation Wove Equation

3.- icabc- (2) For E-mode polarization, the electric field is in the plane of
j~e/desincidence, and this plane contains the grating vector. The

#a I the average relative permittivity. so is the overage con- magnetic fild is solely in the y direction, and so 17 - 1(f.
ductivity (representing the nonspetially varying loase), w is Becamse the magnetic field is only in the y direction, it is ad-
the optical radian frequency, to is the permnittivity of free vantageous to select and to work with the maignetic-field
apace.di is the amplitude of the sinusoidal relative permit- vector Wave Eq. (4). This vectcw wave equation may be sim-
tivity. #is the grating slant angle. K is the magnitude of the plified by using the vector identities Ye v X Hfla V (V( H1) *

NUraIlvectorgivanbYXm2h/A~wedAisthogratingperiod. - (Vt -V)l - MR- VIV( -1 Hx (V X e) and T X Y41 0-

Reprnte from Jeasmi of th~e 0*910a Society of Amesr. Vo 7% 5,Api16
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For EPmode polarization, Jiis perpondiculr to we. arnd thus term into standard formn. the Ieading.(actor is expanded in a
vt.1b'o~nd(R.Y)Yv e. Theagnstic-r'ldvcorwave FourieraserieesU
equation thus reduces to isnK-P( YE~ """''~ -I E A,,exp~jh -P). U 1) .--

9yH- -. v +i-kl(xz)H-O. (6) to+Ee OG(R P) i-

where A, 11- li)t - 11112 - (io/e,) for h ?- 1. A.,-
This equation contains an additional term in comparison with -A,,ad A0 -0. For the E-mode case, the magnetic field
E-mao wave Eq () is expanded in spac harmonics as

4-

COUPLED-.WAVE EQUATIONS HU. z) j E U. (z) ezp(-j -F), (12)

H-Moder Coupled-Wave Equations where U,(:) in the space-hannonic magnetic-field amplitude
The H-mode polarization coupled-wave equations may be and the other quantities are defined as before. Substituting
obtained by expanding the electric field in space harmonics l'4s. (10)-(12) into Eq. (6) and proceeding as before gives the
al R-mode coupled-wave equations as

~ S~rexp(j~z,-F)I d2U.(r) .2 (io-fjsin*')V2 icosojldU,r)E(z, Z) S, Aep-a - IK2 A]
where i is the integer space-harmonic index, S,(z) is the Cos # dU.,,(z, Vim - i)
space-harmonic electric-field amplitude, W, V~ - ig from to j zA
the Floquet theorem, and K2 is the wave vector of the zero-
order G(- 0) refrscted wave in region 2. the grating region 0 + 11lU.. k(r) + Ua,(rfl +2
:5 z :9 d. (Region I is the input region z :5 0, and region 3 is A 2I i- 2
the output region z ?_ d.) The magnitude Of N2 is k2 -X Ah ,144.(z) -0. (13)
2w(io)"12IA Each space harmonic Sj f) inside the grating is TeeeutosfrLnd oaiainaecerymr
phase matched to a forward-diffracted and a backward-dif- Thseqainfo -clplrztonrelalym
fracted wave. These waves may be either propagating or complicated than H-anode coupled-wave Eqs. (8). The two
evanescent. Substitution of Eq. (7) into Eq. (5) leads to an dditiona thereas ine Ea d (13)ubtions tain nl seiS,, and
infinite exponential series in terms of S (z). Ench cciefficient U-, hra h -oeeutoscnanol ,.,
may be expressed assa function of i and z, and each exponent and S,+1 amplitude terms, the E-mode, equations contain
asafunction of iandz. For nontrivial solutions, each coef- U,-.. U.. U,,, and U,.,, amplitude terms. Thpreforein the
ficient must be equal to zero. This gives the coupled-wave H-mode case there is direct coupling only between adjacient

* orders, but in the E-mode case there is direct coupling amongequations. After simplification, the H-mode coupled -wave aldfrce res lhuhtenme ftrsi h
equaionsale -modle case is larger, the resulting coupled -wive equations

I d2SP() .2 f(io - tj sin 0')''2 i cosj dS,(U) may be solved by the state-variables method in exactly the
22d2 a AA Jdz same manner as in the H-mode case.

+ 2m-0S,(Z) +-, IS,+,(z) + S.-()m-. (8)
A2 %2 BOUNDARY CONDITIONS

where 0V i*. the angle of incidence in region I of the input plane At the boundaries of the grating U: - 0 and r d), the tan-
wave, el is the average relative permittivity in region 1,* and gential components of the electric field and the magnetic field
mn is defined as must be continuous. In this way, t ne field of each diffracted
m a 2(AIA\)IeIl2snosinam' + io - (sin 2 

9')l/2 cc$. 1 order outside the grating volume is related to the corre-
(9 spording space-harmonic field inside the grating. Thus, in

order to construct the boundary conditions. the tangential
When the real part or a,, is an integer, this represents a Bragg components of E and H must be determined.
condition. These rigorous coupled-wave equations may be
solved by the state variable method,..-and, together with the H-Mode-PolarizatIon Tangential Fields
appropriate boundary conditions, all the diffracted fields may For H-mode polarization, the tangental component of the

be deermied.'electric field is the y component of E, and it is given by Eq. (7)
* - -Mode Coupled-Wave Equations directly. The values of S,(0) and S,(d) needed in Eq. (7) are

The vectorial K-mode wave Eq. (60 can also be reformulated obtaine i by solving H-mode coupled -wave Eq. (8) for S, (Z)I. .

as a set of scalar coupled -wave equations. The vector term The tangential component of the magnetic field is th- z
may be expanded as component offH. It may be obtained from the Maxwell curl

- ael ain(R. P ) ' Hl M equation r - -aflike. The result is H, - H-i
l-- ))H %n0 Cosa~ 0 Sir waka/d, and, togetherwith Eq. (7), the tangential magnetic

to + iot cos(K. P) a x TOl A field is
(10)

and14 thus -nlY a Y-compoment equation exists. To put this H ~ ZS(~x(jf. (4

...... . ... .. .. .. . . . . . . ..
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Fig. 1. Diffraction effkeneies of forward-diffracted waves for a
losaless* 0 1201 slanted grating (120, angle from z axis to grating

a. vector) for both H-mode and E-niode polarization. The average
9110- C ~~~Permittvy insie adoutid dzhegrasio is the sum If - 22S. The

ongle of incidencet - 421 is at the first Bragg angtle In -DI. For
£ these conditions the s - - I field is evanescent (cut off). The modu.

loio it/to 0.120. The diffraction efficiencies fcr all diffracted
eaThe lild es-- st -+ Were retained to achieve convergence i

a field amplitude. (b) Multiwave first-orde, coupleave theory
results,. showing the effect of neglecting second derivatives and
boundaryeffects. Notice that the diffraction efficiency of the i - -I

-, field isprdictd toe aslarge a 9% venthogh his wave. in fact.OW.3 is *vanesicent! The fields -- 4 toi.-+5 wre retained to achieveao to is z 40 so convergence in the field amplitude. * WTwo-wave G .. +-1)aec-
cod-order coupled-wave theoer- remnlieaowing the effect of neglecting

d1A i.higher-order waves.

E-Mode-Pollarization Tangential Fields - E. W tl ezp(-Aji )Fwr E mode polarization. the tangential component of the
magnetic field is the y component of H, and it is given by Eq. -

(1211directiy. The valuesof Ui(O) and UM()to beused in Eq. X G1 )U.(j.(16)
(12) are obtained by solving E-ninde coupled-wave Eq. (13) I dz
foe UU(). The tangential electric field is the z component of
E. It may be obtained from the rther Maxwell curl equstioti DISCUSSIONA
V X 0 8/01. The result is E, a Lilure(x. z)jaH,idz. The rigorous scalar coupled-wave equations describing dif-
Expanding 1/e(x. z) into a Fuurier series gives fraction by planar lmsy dielectric gratings have been pre-

1 4 sented for both H-mode and E-mode polarizations as derived
- _ C 5eip(phK.?). (15) from the general vector wave equations. The resolting cou-

e~x. ) s-pled-wave equations for both cv..t can lie solved in the same
where Gh - l(Io/fI -1/2 -(iofIe)llhlI(jo2 - (12)1/2. manner by using state-variable method. 2 Bye.%ingthese in
Substituting this into the above equatian for E, and using Hy combination, any arbitrary input polarization may thus he
as given by Eq. (12) yields the tangential electric field as treated.
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*as a t lmotciFg. 2. Tdiffraction effinie ofs for all-diffraed avesaco-

* shown are lkeg than 0.01. (a) Rigorously calculated results. The
fields i --4-45 were retained to achieve convergence in field am-

-smrawsm plitudes. 4b) Multiwave first-ceder coupled-wave theor reults.
showing the effect of neglecing second derivatives and boundary

Soa effec-ts. The fields i - -4-+5 were retained to achieve convergence
ec0 5 25 20 40 s0 in field amplitudes. (c) Two-wave Ga - 0, +41) second -orctee cou-

pled-wa~re thory result., showing the effect of neglecting higher-order
d M Of waves5.

For H-mode polarization. the well-known result of direct ously calc'jlated diffraction efficienicies of several forward-
coupling only between adjacent diffracted orders is obtained, diffracted orders are shown in Fig. I (a). The power in the
However, for E-mode polarization, it has been shown that -mode diffracted waves is initially less than tmat for the
direct coupling exists among Al diffracted orders. The set H-mode polarization because of the reduced coupling in E
of boundary-comdition equations for each polarization is a set mode compared with H mode. However, as the thicknessis
of linear algebraic equations, and. after the coupled-wave increased the -mode fundanental (+) difraction efficiency
equations at* solved, these may then be solved for the exceeds the corresponding H-mode diffraction efficiency.
Plmaae-umatdmed Promogting and evanescent wave amplitudes Diffraction-efficiency results from multiwave first-order
Outside the grating. coupled-wave theoryi are shown for vinmpartson in Fig. I (b).

Numercue01 calculations have been Performed to obtain the In this half-apace theory, second derivatives of the ield am-
fundamental and higher-order forward and backward-dif- plitudes end boundary effects are neglected. Thus a field that
fracted wave amplitudes for both H-mode-polarization and is in fact evanescent (cut off) is still treated as a propagating
E-isode-polorintion Incident waves. Results for an example wave. In Fig.I, the - -1 field is evanescent- However, this
loseless transmission gratingare shown in Fig. 1. The rigor. field is predicted by misltiwave first-order coupled-wave
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p *5 smallet than it actually.i. "is isma result of artilicially re.
ii en taicting goe coupling to be between the i a 0Oand +I apace.

IV tar harmonic fields rather than among all space-harmonic
now. 1 -2 fields.

3It may thus be concluded that. tc obtain accurate reults
for E-mode polarizationt, it is neesary to include higerorder
space-harmonic fiels regardless of whether tine fundamental
propagating order is forward or backward diffracted. load-
dition. if the fundamental propagating oeder is backward
diffracted, the second derivatives and boundary effecta neted

a's to ha included for accurate reaults for both H-mude and E-
Mode polarizations.

Rigorously calculated diffraction efficiencies for an example
losay grating are shown in Fig. 3. The nonzero conductivity

- produces an average absorption that reduces all the diffracted
intensities, as would be anticipated.

Inaseparate clculationa. it was found that both H-rncde and
E-mode polarization diffraction efficiencies reduce to the
values predicted by Kogelnik's two-wave first-order cou-

ors pled -wave theorys in the limit of sufficiently small module-
tioI5.

I Coupled-wave analysis is based on the Floquet condition
and as such applies to a truly periodic grating fan infinite

0o0 number of periods). It the grating fringes are exactly parallel
D0 to 20 30 45 so to the boundries (~o). the structure isno longer periodc. .-

and coupled-wave analysis does niot apply. In this case.
VA however, a simple rigorous chain-matrix method of analysis

Fig. 3. Rigorously calculated diffraction efficiencies of forward- mabeud.
diffracted waves for a losy 0 - 120* slanted Xratnor for both H -mode mabeue.
ad E-mode polarizations. The average condwtivity is so - 400 The generalized rigorous coupled-wave analysis presented
(ohm -mI)-1. The angle or incidence 9' - 20* is at the first Bragg here is mathematitalyexact. There are no theoretical defi-
angle. The modulation isfi/to - 0l20.and the wsvelrnirth A - 51. cienciesor approximations. Any arbitrary level ofaccuracy
nm. The average permittivity outside the grating is the "arue as that is obtainable by increasing tha number of orders retained in

insie 0- 2.5).the analysis. However, corivergence is very rapid. In the
theory to have a diffraction efficiency as large as 9%, even numerical calculations presented here, the diffracted amnpli- --

though this wave is not propagating! Diffraction -efficiency tudes were determined to one part in 108. Conservation of
results from two-wave second-order coupled-wave theory4 are power among the beams was accurate to one part in 1W It -

shown for comparison in Fig. 1(c). In this theory, the should be recognizad that tbasleofaccuracy greetdyexceeds
higher-order waves are neglected, and so only the i 0 an i that usually presented in grating-diffraction calculations.

-+1 fields are shown in Fig. I (c).
Results fo~r an example losslesa reflection grating are shown This research was supported by the National Science

in Fig. 2. The incident wave is at the Bragg angle fur i +1i Foundation and by the Joint Services Electronics Program.
backward-diffracted wave. Rigorously calculated diffraction
efficiencies are shown in Fig. 2(a). Diffraction efficiencies
from niultiwave first-order coupled-wave theory are shown REFERENCES
in Fig. 2(b). The poor agreement with rigorously calculated
results is apparent and is expected for a reflection grating (me .I.G oaaoadT .Oslr."ioosculdwv
Ref. 1). Diffraction-efficiency result.s from two-wave anac-t o( lnr1rtngdfruiaJ.Ot Sc)m..,al-tond-order coupled-wave theory are presented tn Fig. 2(c). 2. C. L Liu and J. W.S.ULu. Loineo nsAntlysiu(McGraw-Hi.
The good agreement of the H-mode-polarization results with Ntw York. 191, ).
rigorously calculated results is apparent and is expected for 3. R. Magnusson and T. K. Gaylord. "Analysis of nauitiwave dif-

a releciongraing seeRef 1) Hoever fo E-odepo- fraction of thick ratings," J. Opt. Soc. Am. 67, 1165-1170
a releciongratng seeRef 1).Howver forK-mde p. 1977).

larizatiin, the presence of coupling to all higher-order 4. J. A. Kong. "Second-order coupled-mode equations foraptially
(space-harmonic) fields (not just to adjacent orders, as in the periodic media." J, Opt. Soc. Am. 67, 825i-929 41977).
case oW -mode polarization) causes this two-wave theory to S. H. Kogelnik. "Couple wae theory for thick hologram gratings,
give erroneous rest Ots for this polarization. The i =+1fun- Bell Syst. Teh. .1. 44, q"t)-2947 (t%.~9).

6.M. G. Mooaram and T. K. Gaylord. "Chain-matrix analysis Ofdamental backward -diffracted (reflected) wave for E-mode arbitrsny-thiccness dielectric reflection gratings,"J.. Opt. Soc. Am.polarization is predicted by this two-wave theory to be much 72.187-190 (19821.



Three-dimensional vector coupled-wave analysis of
planar-grating diffraction
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Diffraction by an arbitrarily oriented planar grating with Wlanted fringe" is analyzed using rigorous three-dimen-
sional vector o &pled-wove analysis. The method applies to any sinusoidal or nonsinusoida amplitude and/or-
phase grating. tine plano-wave angle *f(incidence, and any linear polariation. In the reulting (ronical) diffraction.
it is shown that c auplina exists between all spasce-harmonic vector fields inside the grating (corresponding to dif-
fracted orders outidet the grating). Therefore the TE and TM components of an incident wave are each coupled
to all the TE andI T16 components of all the forward- and backward-diffracted waves. Foria general Bragg angle
of incidence, it is shown that the diffraction efficiency can approach lOWt (fo a lissless grating if either the incident
electric field or the magnetic field is perpendicular to the grating vector. Maximum coupling between incident vid
diffracted waves ia shown to occur when the incident electric field is perpendicular t, the grating vector. In gener-
aI. the diffracted wave. are shown to be elliptically polarized. The three-dimensional vector coupled-wave analysis
presented is shown to reduce to ordinary rigorous coupled wda theory when the grating vector lies in the plane of -

Sincidence. L

DNTODUCTIONi The deacription of grating dit'fraction asa direct solution
of Maxwell's equations has been considered by Nevihre et

Planar amplitude and phase gratings are ct wide interest a i 2D- 22 by Chang ef a.. 23 azed by lKnop.21 Two first-order
owing to their many applications in quantum electronics, in- Maxwell equation wee aolved directly rather than by the
tirntraed optics. acotustooptcs apectroscoPy. and holography usual procedure of solving a single second-order wave aqua-
Ezamnple grsting devices include distributed-feedback lasers. tion. In these analyses, the grating vector was restricted to
beam deflectors. beam modulators. waveguide couplere, lie in the plane of incidence. The general three-dimensional
spectral filterr, wavelength multiplezers and desultipletters. case in which the gatting vector is not in the plane of incidence
and holographic beam combiners. is sometimes called conical diffraction (tor rasont; described

diffracto are the coupled-wave approach-1and the modal been trated using a Green function approach by Chuang and

case ofm gatin c orn n theeod of an fincpl nce (rtng baelow.'s catie hasd tegenea i s e by maysi l adihas

plane defined by the wave normal and the boundary normal). fraction geometry.
In this situation, the TE (electric field perpendicular to the
Plaine of incisicnce) and the TM (magnetic field perpendicular TER
to plane of incidence) components of the input plane wave are
completely decoupled and maybe treated separately. In this The general three-dimensional grating-diffraction problem
special came, (1) if the incident plane wave has TE polarization, is depicted in Fig. 1. A linearly Polarized electromagnetic
thepgating-diffractivinproblem is described as having H-mode wave is obliquely incident at an arbitrry angle is on a
polarization since the magnetic field lies in the plane of the slanted-fringe nonsinusoidall mixed amplitude and phasewave normal and the grating vector (the electric field iseper. planar grating of slant angle # bounded by two different ho-
pendicular to the grating vector) and (2) if the incident plane mogeneous media. The planar grating has an arbitrary di-
wave has TM polarization, th grating-diffraction problem rection of periodicity (direction of grating' vector K). There
is described as having E-mode polarization since the electric are four fundamental directions that apicify this gratina-
field lies in the plane of the wave normal and the grating veto diffraction geometry. (1) the wave-norn .1 direction of the
(the magnetic field is perpendicular to the grating vector), incident wave, 12) the electric-field direction (polarization)
Howeever. in the generel case, as treated in this paper, the of the incident wave, (3) the normal to the plarnar grating
grating vectoz may have any arbitrary orientation with respect boundaries. and (4) the grating vector, In the analysis pre-
to the plane of incidence, In this situation, the TE and TM sented here, without suoy lons of generality, the following ge-
components Of the input Plane wave are coupled inside the ometryisused: (1) the boundary normals are in the z direc-
grating and may not be treated separat. In this general tion. (21 the grating vector is in the r-z plane. and (3) the plane
cals the graltint-diffraction Problem may not be decomposed of incidence makes sa angle i with respect to the r axis.
into separate TE- and TM-polauization problem% as is taually The modulated region (0 <C z <d) contains a mixed am-
done. plitude mid phase grating. The grating may be characterized

Reprinted from Joural efib*e Ordleal Sirebey of Amorksa. Vol. 73, page 1106, Segatmbsr ill
Coeght 0 19M by the Optical Society at America sad reprinted by partission of the copyight owner.



r ~~~anagnticields atthe two bondri (-0 and -d). In
the general thraeedimensional problem, the polarization
cannot ba decomposed into H-mode anid E-nwde components
with each of then treated aeperutely and then the results
combined to obtain the total diffracted field. All the field
components are coupled to am another, and solutions for all
the electric-field and magnetic-field components have to be
obtained simultaneously. The normalized total vector electric
field in region I1(z <0) and in region 3 (z > d) may be ex-
pressed

El Em + Ri*xp(-jktir),0 (6)

Fig. 1. Gemtyo lanted-fringeplo grating with aplane~ wave whrRitenoaledvcoeeticfldfteih
of wave vector h, incident at an arbitrary angle and with arbitrary bwrd-iffrthed orealzed) ave eci ie on wthe wave
linear polarization.cwr-ifate rfetd aeinrgo ihwv

a peiodc cmplx reatie pratttiity dieectic on- vector it, and T, ia the normalized vector electric field of the
by a eidccmlxrltv emtiiy(ilcrccn th forward -diffracted (transmitted) wave in region 3 with

atati xpaedale n- Forie Se'11 Uwave vector kii. Note that, for plane waves.,it, - 0t -- k,,

e~zz~Z~rsxp~jK~r) (1) T, Phase matching and the Floquet theorem require
h that

The quantity i, is the hth Fourier component of the complex hi, - Ik. - MK- Ili + [(k1 - MK) -$09 + kh

relative permittivity and is given by it - e, - ju&Iisfo. where k,+ ,+AI.(8)
r1, and oh. are the hth Fourier components of (he real dielectric =k, ) ,i
constant and the conductivity, respectively. The quantity where
w. isathe angular frequency of the incident radiation. and t( is k. - h1 sin a o - X sin #. (9)
the permaittivity of free apace. The grating vector is given A ,,~(0

j X14+)GI k, - (ft,2 -k.. 2 -ht12(1

X sin 01 + K con 0.. (2) forl1 1, 3 (the region index), k 3 - Ar111
12. and &I is the av-

erage relative peinittivity in region 3. The z component of
wher K 2wA. is he ratng erid. ad* s te sant the wave vector. jr,N, is either positive real (a propagating

angle (angle between the z axis anid the gratinr vector). wave) or negative im-iginary (an evanescent wave). Likewise.
In region 1. the inci'(ent normalized electric-field vector for region 1. It,1, is either negative real (propagating wave) or

is positive imaginary (evanescent wave).
E = m d xp(-jkl 'cr), (3) The Ceovwtrica parameters associated with the diffracted

wavea are shown in Fig. 2. Region 3 is shown in Fig. 2. but the
wihparameters alhown also apply to the diffracted waver- in region -~

h ha(sin acams61 + sin asin " + coosel). (4) 1. The anigle nfdliffraction for the ith propagating order is -

given by
where a is the angle of ini-idence (tie angle between the wave
normal k I and the z axis). 6 is the angle between the plane of un Ph k. 4+ k,2)l'Ik,. (12)

incidence and the x axis, k, ke hep
t

, r1 is the relative per-
mittivity in region 1, k -20wA ?is the free-apace w-vl-rth.

P anWd 0is the polarization unit vector given by

41 =uA + U'S +. ta,

-(To 0 coona CosAS - asin sin A)1
+ (coo. 0 coo a sin
+-sin Co Ie )9 *-

where is the angle between the polarization vector and thea
plane of incidence. For u0"and o.the magei,.-firk
and the electric field, respectively, are perpendicular to the -

plane of incidence. The general approach to solve the oxect \ * 5.
electromagnetic borundary value problem a.scinted with the
diffraction grating is tu find solutions that etitbfy hlaxwell's
equatiuns for the currespoinding wave oequietiorni in each of
the three regions and then to match the tangential electric and Fig. 2. Gaunaery a.wisted with thie ith hqead-ddlrted wavp.
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theorem and the phase-matching condition; the Z componentI is arbitrary and can be included in the S.(it) and U, W func-
tions. The z component, however. is chosen in E.(7 ota
the differential coupled-wave equations to be derived later
will have constant coefficients and will thus be directly solv.

- ~~able by the state-variable method. S,()and U,(r)re the
normalized amnplitudes of the ith space-harmonic vector
electric end vector magnetic fields such that %2 andl U2 satisfy

- - Maxwell's equations (or the appropriate wave equations de-
rived from Maxwell's equations) in the grating region.

For the case when 0 m 0. the grating vector is normal to thet
J boundary. Such gratings are called pure reflection gretings.

The grating fringes (surfaces of constant 4) in this case are
parallel to the grating boundaries Uz - 0, d). Since the per-

7 mittivity is no longer periodic along the boundary, the field
* inside the grating can no longer be expanded in term of

spasce-harmonic components. However, this pure-reflec-
tion-grating came "a be simply analyzed without approhi-

Fig. , Geometry of Iouwsrd-diffractad wave vectors showing conical mation by using a rigorous chain-matrix method of anal-
nature ofdiffrartion. All torward-deflracted wsves ti - -1 to. - +2)
have wave vectors that are equal in magnitude and have the "ame y
om~ponent.

MFFHOD OF SOLUTION
and the angle of inclination of the output plant is given by In the general three-dimensional vectlorial problem under

tan 6, -kI..(13) consideration, all the electric and magnetic apace-harmonic
fields are coupled to one another. Therefore, rather thin

The plane oftdiffraction, ii' general, is different for each dif- attempting to construct and solve two complicated vector
fracted order, as shown in Fig. 2. In the limiting c&%e when wave equations, it is more conveniect snd straightforward to
the plane of incidence is the x-a plane. k, - 0 and all dif- solve Maxwell's equations
fracted orders lie in the same; plane (the plane of incidence).
However, if the plane of incidence does not contain the grating V X 2 - jWPOI. (18)
vector, h yi a nonzero constant. Tewave vectors of all V X H2 - jtev(z. r)E2 (19)
diffracted orders (forward and backward) have the same y directly. Substituting Eqs. (15) and (16) into these two
component (perpendicular to the grating vector). This is equa~ions, arid eliminating the components of E2 and U2more clearly shown in Fig. 3l, in which the forward -diffracted normal to the bou.-Aary, results in a set of four first -order -

waves in region 3 are depicted. The magnitude of the wave coupled-wave equations:
vectors for all diffracted waves is ki. This, together with a
constant value for k, for all diffracted ordcrs. means that the _j l~ iI4S.,(r) + (kdk) 1: a._pfk),(r)p
wave vectors lie on theasurface of a cone (with the cone axis in dz -P
the y direction); hence the terminology "conical diffraction"
for this general three-dimensionail geometry. (In general, the - A5 U,,(rj + W 1 (0
cone axis is in the 4 X K direction, where i is the normal to d~~
the boundary.) -j irKS Wr - W4, (z)

The magnetic-field vector in regions l and 3 can be obtained dz
by using the Maxwell equation +(,k ~j,,()-k,~(fJ

R -/Q1ooWx 1, (14) P

where a' is the permeability of free space, which is the as- d.()(1
sumed permeability in all regionis. dU - k. k./AS,,S. ()

In the modulated region 40 <a z<d), the electric and mag- dz
netic fields may be expressedl as Fourier expnsions in terms .
of the apace-harmonic fields as khi-SY,() - XUW~ If (22)

IU.,(z)~~ + (J,,,(r)k drp'., z - (,/I~Sr 2:

H25  Udpo.41 .) id5+U, ( - 4.S j(al* +~JaJ (23)

+- (b,( aIexp(-. 0. (16) where p - i - h end 8a is the hth efficieto h ore
where expansionofc- 1(x, a) in the form

v. k,,t + k,9 - W,2. (17) iz) epjh'r.24
The x and Y Components of ej are determined by the Floquet A.



Note that. when the grating VOCtU is In the Plane Of inci T* S,"(d~expjc~d). (36)
d$uce, k, -Oad the COUpled-wave equatiom (Eqs. (20)4(234 Nwi+h.-JUjdepjKd. (7am reduced to tw setsT 1 of copedwv eqaios Onid)p ) (irst
met IEqs. (20) and (23)1 gives the solution for the E-mode- ajT - A..Ti - AU,.(d)exp(jiICd). (38)
poldrizatimnca"e and theecond set (Eqs. (21) an Note1 thtginivesR ad nT -,te
the solution fir H-mode politrization.

T1e coupled-wave equations (Eqs.10-2jmyb kwRii + kR, + h, 1*R, - 0,39

ritten in a m at"t fim as~ ~ kT,~+(0

S,. .Lj~ h ,. ~(30)-(40) may be solved for It, and T, (by using a technique
U,, (hsuc curb Gauss elimination with the maximum pivot strata.

Or in compact form as the number ofunknowns. Far example. if a waves (values of
i)aeretained inthe analysis. therv ilb 4n valuesofCVAV,.26 and 3n component of each ofIt,sand T.. Thusathe total

where V is t vector composed of S~. i U,..and U,,. The numiber of unknowns is 10n. which is exactly the number of
coefficient matrix A is the system matrix composed at the 16 equations given by Eqs. (304)-40). The computational time
aubmatrices in Eq. (25) that are in turn specified by the 4 sets and storage requirements may be reduced appreciably by
of coupled-wave equations. eliminating It, and Ti from Eqs (31)-438) and solving for the

Equation (26) may be solved using a state-variable method C.'s and then calculating Rt, and T,.
(described in detail in previous publications8-) by calculating The diffraction efficiency is defined as the ratio of the
the eigenvalues and eigenvectors associated with the matrix component of the real power carried by the diffracted wave
A. The solutions of the coupled-wave equations using the normal to the boundary ft component) to the corresponding
state-variable method may be expressed as component of the real power associated with the incident

wave. That is,
Si(z) - C,.W1,. exp(A.z), (2)DE 1, . -Re~k,/Oh' cosXRj12 . (41)I. ,~() 1 ..w~,. ep0~,r. (8)DE3, - Re(A.,,/A 1I cos)(T.1 2i (42)

- where DEji and DE3, are the diffraction efficiencies of the
U.&) C.W3i- eP(XZ)- 29) backward-diffracted (region 1) and fosward-diffracted (region
U,.() =E C,.w.,. xp(,.,). 29) 3) waves in the directions kii and k,,. respectively.

- Power conservation requires that far losaless phase gratings
Upz)- C,,w 4.,, exp(A.z), (30) the sum of the efficiencies for all the propagating waves be

- unity. That is,
where C,.'s ae the unknown constants tobe determnined from E (DEI. +, ME) -1. ( -)
boundary conditions, . 's are the eigenvalues of the matrix
A, and w,, 'a are the elements of the eigenvector matrices It is important to note that Eq. (43) is satisfied for losies
corresponding toea given vaise of i (space-harmonic field in. phase gratings independentlyof the number of waves included
side the grating or diffracted order outside the grating). The in the analysis. Thus it sums to unity for any number of space
eigenvalues and tigenvectous are typically calculated by using harmonies retained, independently of whether the corre-
a computer library program.9 Nate that, if n space har- sponding fields outside the stating are propagating or even-
mnica (values of i) ate retained in the anal-sia. the matrix A acent. Any significant de-istion in the sum would indicate
Will be 4n X. Vi and the vector V will be of length 4n. This the presence of round-off errors-in the numerical calculations.
system of equations prtures 4n eigenvalues and 4n values How-ever, for all the calculations performed, the deviation was
of the unknown constants C,..arid e-sch of the four eigernvector of the order of 10-12 (when a CDC 760(73 computer was
subatrices (q m 1. 4) Wqj. will be ano n X A matrix (n values used). However, thme accuracy of each individual order do-
of i and 4n values of mn). pends on the number of space harmonica retained in con-

The amplitudes of the diffracted fields R, and Tj (togcwher structing the A matrix. In all the results presented, these
with C.), are calculated by matching the tangential electric errors are less than 10-. It should be noted that this level

*and magnetic fields at the two boundaries. At z 0. of acruracy greatly exceeds that usualily presented in grat-
U "o, + R., -S, (0). (31) ins-diffraction calculations,

In summary, the algorithm used to solve this problem
UY60+ R.., -SV, (0). (32) proceeds as follows: First. the coefficient matrix A is con-

So(k,u, - kAt cos au1,) - h, I~RW+ A,R., k AU., (0). atructed. Second. the eigenvalues and the eigenvectors are
(33) calculated. Thrd. the system of linear equations (Eqs

(31 )-(40)] (or a modified verp ion of these) is constructed and--
ilo(kir cosa m,. - A~omi,) +t A.t,R,., - keRa, ktLJ.(0). solved for the R,'& and T,'s. Fourch. the diffraction ef-

134) ficiencies are calculated using Eqs. (41) and 142).
It is important to note that, if it is desirr.J to ctlculate the

diffraction efflciencies for Lnother polarization (aniother value
T,.. S,,(d)exptjiKd). (35) of 0&). the new diffracted fields R, (0) and T,(J) nr -
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culated for the new polarization ft by using the values of R ~RESULTS AND DISCUSSION
and T4 for any two eloncollinear Polarizations eg and H, Th rigorous throe-dimenional vector coupled-wave analyuis

and he fllowng elatonahpspresented in this paper describes the diffract ion by an arbi-
WO WIsa - O)R1110) tarily, oriented plana- grating wit) nted foringe,. In gen.

-sirt(4's - OMAJ211J/sin(02 - 01. (44) oral. the grating vector doea not lie thie plane of incidence.
and conical diffraction resulta. For the specia case when 6

-O Jin(4W - #YSW'i .0the grating vector does lie in the plane of incidence, and
-sin Wa - 44T.W,2)I/ain( W - 0) is possible to compare the results froin the present vector

However. the values offtKOO, 111,2).0,and T64211 must theory with previously published rigorous scalar theory re-
still he determined by using the complete three-dimensional srlta." Exomplo results for 6. -0 are shown in Fig. 4 for an
vector theory as described in this paper. This doesanot iml unslanted phase grating with a grating period equal to the
that the problem can be decomposed into uncoupled TE and wavelength of light in the medium. The normalized electric
TM problems. field and the diffraction efficiency of the first-order 0i - +0)

The above method of solution applies equally for incidence forward-liffracted wave are shown. When 0 - 901 or f- 00.
at a Bragg angle or for a general ang', of incidence. Bragg the incident wave haii TE or TIM polaritation, respectively.

*incidence occura when the quantity in given by For 4, - 900, the incident TE wave is coupled only to TE waves
m a 21K)JkoK. Re ic kO- k )1/K, 46) Isuch as the i - +1 diffracted TE wave shown in Fig, 4(alI.

mu 2/2)r~JC +Rek10 - k2)nJ, 46 However, there ia nocouplingof the incident TE wave toTM
isan integer. This would then correspond to the mth Bragg waves ise" Fig. 4(b)). Likewise if the incident wave has TM

*condition. polarization lif M ) it is coupled only toTM waves. There

#.. e
~ *.~ d

d d d 'W

_0

~44
410
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* ooilngoiffllwavutoEwves nIWA -Ota For maliued to the value at the Bragg angle CW0' is shown as a
the ipterrmediate linea polariatona of the incident Plane function of angle of incidence in Fig. 4 (d ). This general form
wave., the electic rwel can. therelore be decomposeid into TE of angular selectivity iswell known for thick gtratings.' The
and TM oopoeonta. and the diffraction of theme co'pooenta angular width of the central angular-selectivity lot,! is wider
may be treated entirely separately 1jaseEqa. (2011-03) with ky for E-mode polmrizasticir (;P - 0") than for H-njode polaniza-

01O. The output diffracted field may then be obtained by tion because the smnaller coupling strength of that polarization
vector addition of the individual diffracted TE and TM produceii, less dephasing for a given angular deviation from the
components. Thes resultatit diffraction efficiencies are shown Braggagle. Alf the numerical vector coupled-wave analysis
in Fig. 4(c). Since the conversion ofincident T7B to diffracted calculations in Fig. 4 havv been repeated using scal, rigorous
TE waves and the conversion of incident TM to diffracted TM coupled-wave analysis based on solving scalar-wave equa-
waves have different cOupling .trengtia,. the resulting TE anid tionO.9 for ehe individual TE and TM components. This
TNI diffracted wave amplitudes change at different rates with miethod of analysis duplicates the results shown in Fig. 4.
respect to grating thickness Iconosre Figs. 4(a) and 4(b). Ezample results for a general-transmission grating when
This out-of-phase behavior (with respect to grating thickniess) the grating vector does not tie in the plane of incidencm are
causes the total normalized diffracted field to be less than shown in Fig. 5. The grating and the wavelength are the same
unity. and thus the diffraction efficiency does not reach 100% as those in Fig. 4. However, the plane of incidence is now
with increasing thickness (see Fig. 4(c)). However, for an inclined !o 6 - 30'. For a general plane-of-incidence inchi-
incident polarization that is purely TE (and thus E is per- nation angle 6, the Brag; condition (Eq. (46)1 may be rewritten
pendicular to K for 6 - 00) or purely TM (H perpendicular for a losless grating as

* to K for 6 -O0). the resultant diffraction efficierncy will aP-
proach 100% with increasing thicknjsa (see Fig. 41c)!. For a in a 12(i)'"AA1sin a sine cirs 6
grating of 50-jum thickness, the diffraction efficiency nor- + (rw/c, - uin 2a)02 Coo #J. (47)

r-

, . -
W-

W.l

C SW

seetvt for grtn wit a a~ei - -0um
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Seceit tis equn tat o the frsctio Brsfi can aprm c othgve etrn inc th pulane tof in(idence0(6V.9 0'). ini st
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to wav ists - 0 isaopld tisothyte TMidiffate wave .chrns this gast snthialely the% diffraction efficiency,
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*en to b s show nctat to the vfaluo fins cange byroc oth" dfrin fcien cy aTizatio a s(i te0'.3(f 90 e ic teed n Fqs
from the values giting iyE.(8Fo the sso incidenteeticfld(r( and b fomoret (Fi306. ikee inciet r erendiwtade

tagnic il) ist p rndetlpr nciculartoheraigcto se t lo eu nTed Mdfrce fedcmoet
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Abstract. Planar (co)sinusoidal conduc.ivity (absorption) transmission gratings are ana-
lyzed using rigorous coup~lcd-wave theory. The fit t-order and higher-order diffraction
efficiencies are determined over the entire range of possible conductivities and Bragg angles
of incidence for equivalently, grating periods) for H-mode polarization incident plane
waves. The maximum possible first diffracted order efficiency is found to be 5.20.
Rigorous results are compared to approximate results from the Raman-Nath th Dry and .
the two-wave first-order coupled-wave (Kogelnik) theory. A regime parameter, e, is defined
which delineates the regions of Raman-Nath diffraction behavior (Q, < I) and the rgion of
two-wave first-order diffraction theory behavior (Q.> I). Likewise, the angular selectivity
characteristics of conductivity gratings are determined from rigorous theory and are
compared with corresponding results from approximate theory.

PACS: 42.20, 42.40

Optical difTraction by planar transmission gratings is a angular selectivity characteristics of these gratings and
subject of fundamental importance in optics. Fields of compare them to those from approximate theory. To
application include acousto-optics. integrated optics, assist in isolating the basic diffraction characteristics
quantum electronics, holography, and spectroscopy, from other physical effects, the fundamental case of the -
Grating device functions include laser-beam deflection, same permittivity inside and outside the grating, an
modulation, coupling filtering, distributed feedback, unslanted grating (fringes perpendicular to surface-
distributed Bragg reflection, holographic beam com- and H-mode polarization (electric field perpendicular
bining, wavelength multiplexing. and wavelegth to the plane of incidence and perpendicular to the
demultiplexing. grating vector) is treated.
A rigor,)us coupled-wave theory (without approxi-
mations) has recently been formulated for lossless
dielectric gratings with reLtive petmittivity (dielectric I. Theory
constant) modulation [I]. This analysis has been
shown to be general and the approximations used in Conductivity Grating
previous theories have been explicitly quantified [2]. It The gratings analyzed in this work have a conductivity
is the purpose of this paper: I) to extend the rigorous of the form
coupled-wave analysis to (co)sinusoidal conductivity ox)+. cosKx. (I)
(absorption) gratings, 2) to show that the maximum
diffraction efficiency is 3.26% (rather than 3.71 % from The grating is unslanted with grating vector K (of
Kogelnik theory [3] or 4.0% from Raman-Nath magnitude K - 2t/A. A being the grating period) along
theory [4] for these gratings, 3) to define the diffrac- the x-axis. The planar surfaces of the grating medium
tion regimes and their boundaries for transmission are at z-0 rnd :1-S The pt ane of incidence is the x- z
absorption gratings, and 4) to dctermine rigorously the plane and thus all quantities are invariant in the

i i°
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yflrection. The pennitlivitya of the grating is con- The diffraction efficiency for the first-order transmitted
stant and equal to the permittivity of the surrounding wave according to this theory is given by
medium. The permeability gi is that of free space. In "_.-_-.
terms of these parameters the attenuation factor a(x) is DE1  d co s / °(e,' co"')

a(x)-oi(jae)" 2({j[[ + (o/cti) 2]"z _lJ]} i (2) and the zero-order (undiffracted) transmitted efliciency

where w is the angular frequency of the incident light is predicted to be
wave. The primary quantities of interest here are the
diffraction efficiencies of the first-order and higher. DE. . -exp - ° °o mb z / Cosh d )
order transmitted diffracted waves, In particular, the COW) .6) cost?)
maximum value of the first-order diffraction efficiencyis obtained for the total range of conductivities and The maximum fiest-order diffraction efficiency occurs

grating periods at Bragg incidencedi os'-n3. This maxi-mum efficiency has a value of DER., - - 1/27- n3.70%.
The results of this wel-known two-wave, first-order

1.2. Rigorous Coupled-Ware Theory approximation are usedasacompacison for the results

The rigorous coupled-wave equations for an unslanted obtained from rigorous theory.

(co)sinusoidal conductivity grating for H-mode polar-
ization are 1.4. Multiwave First-Order Theory ,itkout Dephasing
d'SA:) 4x. osz^.tIdSIP:) In this approximation to the rigorous theory (an
-T-2- V o -9€°si, d: extension of the Raman-Nath theory of phase gratings

.,2[6-] to absorption gratings [4]1 the second de-
+ ) m-i( - A:-j attro[S,+ (:)+S,_,(Z)]=0, rivatives of the space-harmonic field amplitudes are

k assumed aegligible, dephasing from the Bragg con-
(3) dition is ignored, and the boundary conditions on the

where S,(:) is the normalized amplitude of the th space- space-harmonic field amplitudes are assumed to be
harmonic field at any point within the modulated S0(0)-I and SAO)-0 for i*0. The diffraction ef-
region, A is the free space wavelength of the incident ficiency predicted for any transmitted diffracted order i
plane wave.4E, is the permittivity of free space. c. is the is give' by
relative permittivity !dielectric constant) inside and 1, ( oe'd
outside of the grating. 0' is the angle of incidence in the DE,. expli,n ,- ',.
input region.

where Ij is a modified Besd function of the first kind
m- 2Ae o' sin0"/, (4) of integer order L The quantity i is equal to the
is the Bragg condition for an unslanted absorption diffracted order. The maximum first-order diffraction
grating (m,-I for incidence at the first Bragg angle. 9k). efficiency occurs when a, -# and eoood/24 1"cos6'
uo,,(po/ee)"3 is the characteristic impedance of free -1.545 and has a value of DEt..,.24.80%. The
space, and pa is the permeability of free space. These results of this multiwave first-order theory without
rigorous coupled-wave equations can be solved by dephasing are used as a comparison for the results
state-variable methods (5]. Then with the application obtained from rigorous theory.
of electromagnetic boundary conditions (continuity of
tangential E and tangantial H at :-0 and z-d), the
diffracted fields and thus the diffraction efficiencies 2. Diffraction Chaoracterlts
can be calculated for any order, reflected or
transmitted [1]. To determine the diffraction characteristics of planar

(co)sinusoidal conductivity gratings, the first-order and
higher-order diffraction efficicies were calculated

"..... To-Wave First.Order Theory using the rigorous coupled-wave theory. The maxi-
In this approximation to the rigorous theory mum first-order transmitted diffraction efficiency was
(Kogenik theory [3]), the only orders retained in the determined for each value of conductivity modulation r "
analysis are 1-0 and + I; the second derivatives of and Bragg angle of incidence (or equivalently, the
field amplitudes are assumed negligible; and the grating period). The rigorously-determined diffraction
boundary conditions on the two space-harmonic field efficiencies were then compared with results from the
amplitudes are assumed to be S0(0)- I and St(O)=0. two-wave fint-order coupled-wave (Kogenik) theory

,'. .
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Table 1. Maximum dd0raclim gefmfm fr s m s1hdl m Sdudif t p.1m T1i maximum dAMC6o eficieWSr 1" ism Pemlt) Sic dhown
lar each lombitiv of cooluawn and WaU angle. Th mlitu& of dhe €oaducwily adulatea a Wit cam equal to Via & wape
a'oedectiwty odie Va1m i The adi or felmmo aside sad ouuWde oldie pati ats equa

U" A~lofiaidso (at fim Stag anOOe

I. 5 6 '1 UiP tO, I I.4 Is* 19.47 20 2 .10 3S 40 45

3.704 3.700 3 398 3.69 3.704 3.702 3.704 .04 3 .99 37.03 3.9% 3.703 3.704
10 3.0 3 700 3 - 3.691 3.69 3.704 3.702 3 704 1704 3 6 .703 )A73 9 3.70. 3.704
10 4.057 3.710 3J0J 3.700 3.6"9 3.704 3.702 3.704 3.704 3.693 3.703 3.699 3.703 3.7V4 '".""

10' 4.100 4.390 4118 .536 3.759 !737 3.714 3.713 3.705 3.6 3.02 395 3 .701 3.700
5 x IO' 4.794 4.775 4.751 4.6A59 4.49 4.385 4.000 3.957 3.745 353 3.675 1.657 3,000 3.575

9.375 4777 4.7 4.802 4.78 4.743 4.692 4.459 421 4.015 3.674 3 07 3.562 3.529 3.454
10r 4.773 4.791 4.799 4.794 4.754 4.704 4.499 4.319 4.046 3.673 3.516 3.57 3.49 3.432
14.75 4.747 4.775 4.789 4.101 407 4.787 4.6.9 4.627 4.332 3.69) 33. 5 3.420 3.330 3.230
2.125 4.641 4.666 4.611 4.748 4.757 4.881 4.79) 5.126 4.851 3.590 3.275 319 3.0-0 2.906

5 "to0 4.491 4.520 4.552 4.635 4.700 4.537 4.610 5.256 4.106 3.646 3.137 2.927 17 2.639
55.937 4.450 4.498 4.512 4.804 4.672 4.812 4.673 5.260 4.911 3.649 .139 2.900 1730 2.576

to, 4.272 4.3.120 4.362 4.474 4.526 4.717 4.518 4.197 4.49 3.611 3062 2.721 2.493 2.295
S x101 3.441 3.505 3.569 3.744 3.793 4.050 3.736 4473 4.151 3.141 2.642 2315 2.114 1.9"1
t0. 3.053 .117 3.180 3.353 1417 3.9147 3.406 4.253 3.925 3.001 2.558 2.279 2.102 1.993

and the Raman-Nath theory. The regions of validity of .-

these approximate theories were then delineated. -

Similarly, the angular selectivity characterstics were
calculated using rigorous theory and compared with
results from approximate theory.

2.1. Maximum Diffraction Efficiency

The maximum first-order transmitsed diffraction d- " -

ficiencies in percent for a range of Bragg angles of i
incidence and grating conductivity amplitudes are
presented numerically and graphically in Table I and .
Fig. 1. respectively. The conductivity modulation
amplitude is always equal to the average conductivity
value, as this is necessary for maximum diffraction
efficiency. The wavelength of the incident light is
00nm. and the grating period is vaned to keep the

angle of incidence always at the first Bragg angle
(01-1), The relative permittivity (dielectric constant)
both inside and outside the grating is the same in order
to eliminate the effects due to discontinuities in the
average index of refraction. For near-normal incidence Fig. I. Maximum diracuos effacdcces for cneoidal cOnductive
and lower values of conductivity, the maximum dif- 5tati10
fraction efficiency tends to the value of 4.80% predicted
by the Raman-Nath multiwave theory. which neglects waves are evanescent and rigorous multiwave theory
dephasing. For conditions of near-normal incidesnce. may be approximated in practice by a two-wave
there are many closely angularly-spaced propagating calculation. "
diffracted orders and dephasing is indeed expected to A significant structural feature in the resulting maxi-

be of minor importance. For larger Bragg angles of mum diffraction efficiency surface (Fig. I) occurs for
incidence and lower values of conductivity, the maxi- those Bragg angles of incidence at which higher-order
mum diffraction efficiency tends to the value of 3.70% diffracted waves are at the transition from propa-
predicted by the Kogelnik two-wave first-order theory. gating to evanescent (cut-ofl). For example, the
For these larger angles of incidence, the higher-order angles sin '(I/9)-6..38', sin '(l/7)"-g.21', and

4.-%
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Table 2 isauspe Iqadanuental and hiher-order dillracro. l tffwkies for a Bragg angle kK~dWM of1 I1V.,e sinusoidal euoduci,'.ay liraunp
according to ib. Ramnan-Naub. Kottelnak. aad rigoous coupled-wave shatiras The first cani .-S I 9borlan the Bragg rtlin,. Motiak
theary) and She secood case Ia,-Wi0'msowm am inhe Esmemo-Nash regim. Othier parameters ane i.O.Str A-14.2Sla e,-.andW
thickeI chosen la Aauflue DE,

Theory 4 0 Difluaclion 9Wiamnc )

11161119-11 Di. DE, DE1  DE, DE, DE,

Rarnan-Nath 1 6.112x 10 19.6 4.49 3.@5X t1 9.6 X o1 1.75 X 04 2.05 X o
Kogetnik 1 8. 12 X50' 14.9 3.70 - - - -

Rigorouascoupled-wave 1 8.12X to, 14.9 3.70 1.39i X0 5o .77 X o-'* 6,04 X to 2.25 n0iC"
Ranun-Nath to, 1.t2 X to - So 4.30 598 X t0' 3.61 x10 -' 1..27 Mto- 2. x o-'
Koletnik 50' 8.12 X10- 7.54 3.30 - - --
Rigorous coupled-wave 1W' 8.12 X50 o * .0 4.80 5.99 Xsto, 3.61 '(tO-' 1.27 x 10' 2.85 xt0'

sin - (]15) 2 11.54' exhibit local diffraction efficiency In fact, the higher-order diffraction efficiencies calcu-
maxima in the surface and correspond to transitions lated by rigorous theory were found to obey the
from 10 to 8 transmitted propagating waves. 9 to 6 condition
waves, and 6 to 4 waves. respectively. For the angle
sin- '(1/3)m 19.47' and a conductivity of 55.937mho- X D 4 /Q.(I0)
s/nt, the global maximum of 5.260'. occurs in the ftit- 1.
order transmitted wave diffraction efficiency. This That is. the sum of all of the higher-order diffraction
angle marks the transition from 4 forward-diffracted e'ficiencies is less than l/C.. This is exactly analogous
waves to 2 waves Y - - I and + 2 become cut-oil) to the Bragg regime two-wave criterion for phase
Other transitions, of course, occur for specific angles gratings [11]. Also for C. > 1 the values of the trants-
less than sin -'/9.However, the resulting local maxi- milled wave (i-0) efficiency calculated by rigorous
ma are masked by the overall Raman-Nath behavior theory were compared with the values predicted by (6)
of the surface in that region. from Kogelnik's theory. Good agreement was agtain

found except at high conductivities. An example e. >I
case showing this agreement is given in Table 2 Since

2.2 Diffractionr Regimes two-wave first-orderr theory neglcts all diffracted or-
The regime where the two-wave first-order theory ders except the 1-0 and i- + I orders. there are no
accurately predicts the diffraction characteristics is predictions for the higher-order waves using this
often referred to as the -Bragg regime". The region theory. and these are indicated by dashes in Table 2.
where Raman-Nath theory is accurate is called the For t hc region of q. < i. the diffraction efliciencies of
"Raman-Nath regime. These regions may be distin- all diffracted orders (in addition to the i- + I order)
guished by a regime parameter. The conductivity were calculated by rigorous theory and then compared
grating regime parameter q. is defined as with the values predicted by the Raman-Nath theory,

(7). The @.<~I regimire includes near-normal Bragg
41r!__. 5 incidence ilarge praling periods) In this region the

#'- Raman-Nath formula as given by (7) was found to
produce accurate results for conductivities up to aboutby analogy to the regime parameter e for phase 5 x 0r' mho/m. This close agreement for the first-order

:ratnss 9-Il whih 35diffracted wave is apparent in Table I and Fig. I For
@-Wc,'.(9) the zero-order and higher-order diffraction efficiencies.

penntsiity similar good agreement was found. A single typical
where el is the amplitude of the relative pemttvt a<I case showing the agreement with Raman-Nath
modulation of the phase grating. The condition g,-I * ~ oe nTbe2theory is nld iTaeZseparataes the a -0, plane into two regions as shown in
Fig. 1. For the region of e.>1 which includes large
Bragg angles of incidence (small grating periods), the
two-wave first-order (Kogelnik) result as given by (3) 2.3. Angular Selectiitry
produces accurate results for the fundamental dif- A Bragg condition occurs whenever ms in (4) is an
fracted order (i - + 1) for conductivities up to about integer. Dephasing fromn the Bragg condition may be
103 mho/m. In the g. >I regim the transmitted power produced for a fixed grating by changing the angle of
is conce ntratled primarily in the 1 0 and i- + I orders, incidence andlo; the wavelength. For am-1, it is the
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klat of funsdamental Bragg incidence. In this caKe there Table 3. Aftgular secivity (of sinusoidal conductive gratings- The
is efficient power transfer front the incident wave to the full an ula eiao about tnefirm Brans &ng-. AOt. that causs a

reducion i The i .lrctis~cency to omehl boo the value at the
j. +1I diffracted order. Mathematically, this is due to Bran agl is glivmf both the AMeOajnag valse oJArom IKopel.
the bor (age-OI being zero in the rigorous coupled- nikbs two-wave irmnrskdi couspted-oave tbeoty and the value from
wave equations, (3). This SAz) termt in the rigorous the present fsporeus theory are sliaws. in eadhcase es30.

coupled-wave equations represents dephasing from (he A - 500 nun. Jad the gratings is Uily adulei. The indies, of tefrac.

Bragg condition. When it is aerro, there is no dephasing Is inside and otde of the statuis am eual

and Bragg incidence occurs. The two-wave first-order *0lqn
coupled-wave analysis of Kogelnik retains the effects
of dephasing frum the Brags condition. The Raman- Korelinmba Rigorous
Nath theory neglects this term entirely, and any angle lsmbo/es] 1- theory theom
of incidence and wavelength is treated as Bragg to- Sm X 10 3.011(lo-1 3.09 X10-4
incidence. I SA 5*5 08 X10O2 5.09 X10
The angular selectivity of a grating is a measure of the 20 $43 X10-1 so08 't0' 5.04 Xio'
sensitivity of the diffraction to changes in the angle of 101 A 10- 1tO 5.08 Xto- 1.06 rto-
incidence. The angular selectivity, 4O, may be defined to' 5.1CcI3- S.4 0 5().iiIa
as the full angular deviation about the first Bragg angle 10, 9.25 a to 1.37 x 10' 1.13 x 101
(mu =I) which causes a reduction in the diffraction IV' IM atO' 1.75 x I0' 7.79 x I01
efficiency to one half the value at the Bragg angle. This Io, 1.02 x 1 1.79 x 101 7.54-10,
angular selectivity may be calculated from rigorous
coupled-wave theory or from approximate two-wave
first-order coupled-wave theory since these theories 3 .Sumary sad Dis miss
include dephasing effects. The'angular selectivity is
given by The rigorous coupled-wave equations for (co)-

49-* -- ,(11) sinusoidal Conductivity (absorption) gratings have
wher e nd ar theanges f icidecegreter been presented. These were then solved subject to the

than and less than the Bragg angle, respectively. at appropriate electromagnetic boundary conditions for
whic th difracioneffiieny ha drppe to ne alf the first-order and higher-order transmitted diffraction

of the value at the Bragg angle. From two-wave first- efficiencies for the entire range of possible conducti-
orde (Kgelik)theoy. hes quntites re ive by vities and first Ragg angles of incidence (equivalent to
orde (Kgetik)theoy, hes quntites re ive by the range of possible grating periods) These results

G sin~±(4Ai(cos9.-(Axd)'" were then compared to results from the Raman-Nath
W in I +(.4/std)3 and two-wave kt-order (Kogelnic? approximate

(12) theories. Example results are shown in Table 2. The
The quantity is a dephasing parameter. if _o=0 there global maximum diffraction efficiency for the first-
is no dephasing and 01-=9, indicating J6-0 (in- order transmitted diffracted wave was found to be
cidence at Bragg angle). For the maximum efficiency 5.26% rather than 4.80% or 3.70% predicted respective-
(DE 1 , 1/27) in this theory, it is .4 = 0.8952. The ly by the Rama,-Nath and Kogelnik approximate
angular selectivity may not be calculated from Raman- theories.
Nath theory since that theory does not include any A conductivity grating regime parameter was defined
dephasing cffects, as e,.=4xA/qoe54' by analogy to the phase grating
A comparison of some angular selectivity results from regime parameter [9-I I]. The condition e - I was
rigorous theory and from Kogelnik theory are shown shown to delineate Raman-Nath diffraction behavior
in Table 3. In each case the first Bragg angle 9,-3D', (ep, < 1) and two-wave first-order (Kogelnik) diffraction
the wavelength A -500 nan and the grating is fully behavior (e,>l). For sufficiently high conductivities
modulated #, -a,. For each conductivity. the thick- (about S x 10~lm for Raman-Nath theory and
ness that maximizes the first diffracted order power is about 10'rithof.m for Kogelnik theory). it was shown
used. For relatively thick gratings the rigorous theory that these approximate theories no longer give ac-
and the kogelnik theory predict the same angular curate results even though the regime parameter con-
sensitivities. For high conductivity thin gratings, the dition is met (Pig. I)
Angular selectivity. A9 approaches approximately The angular selectivity characteristics of these planar
O0W. Howver, approximate two-wave first-order conductivity graings were analyzed using rigorous
(Kogelnik) theory. (12), predicts that the angular selec- coupled-wave theory. Two-wave first-order ariproxi-
tivitY approaches IS0' in the limit of increasing mate theory was found to give accurate predictions for
conductivity. conductivities up to about l0'mhom, but overrati-

e.-.4
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Symposium on Diffractive Optical Elements

Udi~oagnN~be~ Invited Pagpezu

deriersttEkenNtnes Ena-a-mrel.Strease J. 820 £Etlnten, West GermanY.-BY meazie of .t
tratio wewe bl tomodfy hedirctin. heamplitude, "h Phase, the polarization, the shape at a wavetsuin, IMi

ihneeimmnional distribution of energy and at light pressure, end the spectral composition ofa light bee... Devies
that peifore such mcatiomnsaecalleddiffrective ptcal elemna(DOWs'. We briefly reviewe the histoqof some
DOES, such as gratings. saws plates. asatal fillaas. three-dimensional DOE's, and hologras. Tlh. emphasis aeoas
modern version of DOEe. Most of the application sae dealt with in the companion lecture 123i.)

TLA2. Applicalea.tlDiffractive Optical Elomessta N.J. cautn.fZ AppliedSciencsDiiion. Aevoyne
Resarch, Inc.. 45 Meaning Rood, Billerica, Masachausetts 0J82I.-Diffrctiva opticel elements (DOE's) ane proving
soheof aignificent value in& wide variety .1fields. The foumetion of high-quality diffractive optical elements is be-
comingsa matter of routine technology urn several places around the world. Thefirattakofe DOE deeigneru to beost-
tamn that the design does not violate any of the physical thermodynamic laws. Sm fteeln r elkonI
optics in ceneral, others seem peculiartsoDOE's. The neow laws have soda with the mutual effecta of spectral anid spe-
tailcoherenceinboth rording and umaDOEas Among choces available to the DOE designer are activity (passive.
active, volatile). dimenejonality (bulk. integrated). end interaction moade (reflective, transmissive, both). We survey
applications by considering whet classical optical elemente carn be replaced by DOE'. A partial lost includes diffroc.
tios gratngs prisms, beam splitters, pinhole filters. dicbroic filters, wavelength multiplexors and damultiplezer, fiberS enuplere. source-fiber and fiber-detector couplers, scanners. airnors retmoefiectors. integrated optical input-output
ample., lass, multiple imaging. and image conversion. Each .f these is discussed man ilustration of thegeneral
principles described earlier. (13 min.)

Censai buted Papers

TLAS Diffraction, of Finite Beams by Dielectric Gratings. m~. tivitychbaracteriatics (strong Bragg diffraction trgime) rigorous cal-
0. MOSAM ANT. 1K. GAYLORD. School ofIElctrical Erngirneerngr. culetions are needed. (13 min.)
Geogia Inslttue of Technology. Atlanta. Georgia 30332-Elec-
tromagrnetic diffraction by dietric gratings Uas been erteneivelly IN4
treated in the literature. However, most theoretical investigations GratisC . .140 HARAM. 1. K. GAYMM1. G. T. SINILRBOX,- I.
apply to difraction of infinite plane waves rather than to realistic
lte basms. In thois or.he difrati~o . (mte bemsbydielectric sWRucm5ANDU. Yum.- School of Electrical Ernotre'i. Geoergia
gratings has been analyzed using rigorous coupled-weve analysis Isiue. ehooy im. eri 03 Sraerle
etmbmad with, a plawewavs superposition representation oftefitt dielectric gratings with aribtravy profilest ame of wide interest owing
beam Rigorous, calculations for the diffraction charaerisica of totheir may applications, in quatume lactrahit wsrated optic.
Gauassian beam incident upon planar aid rectangular grooved di- holographic optical elements. and apectroacop. Recently sud-ce
electric gratings have been performed. The diffracton, ofie relief gratings with arbitary profilhae bean analysed using a
alon with the near- and far-field profiles of the sdiractedi beam are rigorous coupled-wave approach.Intswokriouscllaes

p e" It inshown that the productotfthe ratio of the bum. width for the difftection effocencyand wvelengthmodaagulr selecivitles
for TE and TM polariztons are presented for several profiles, in-

ttelight wavelgt and the anfula width of the angular selectivity cluding rectangular. sinusaiolaleawtooth. and profiles fabricated by
chaoracteristic of thegrating 4for a plane wavel play critical roles in B.Tedpnncofteectmaeicifrto rcssn
the diffracio characteristics. for wide beam and/or bro IBM The dperamenes of theeeto andatom Diracoafn
slectivity chaateristics (multiwave diffracrtion regimeO the dif-
(raton process, in the nar field, is essentially the diffraction of a site beam by suzface-ftfe dielectricgrating is discussed briefly.
plane wve with the, diffractedi orders multiplied by the incident beam (13 min.)
proile. For etreely narrow beam and/or narrow angular selec- 1D, Sga Joel. Califo~rnia.



sad aa point nmadinasltY to INplaMeu a t-4.dWerieaal -try to notj the baodwith lage topntriz before processing it liqher.to
of indepsendent logicr (NOR) alsa AM ta e mane holograms. -a One approach ia to perfoma unitary tranaormstion aoh matixs
tIn itsconact ta gats. In th" paper wa describe requirements toebtainea psis. matuis a - VTV. what U andiVam oat, mvoia-
onethe SLM toose eproper ruuting ortha optesa logic system. *lefte ommouatin or othonorme oim The soluionIW 01' this
taking into accont ease of the charactersatic& peculiar so SLMs- eqation is computation intensiver for large G. The tuiple-matriz
Thor transe characteristic must be negative -going (invertifgl and product =n the right in this equationsm. be efriasently implemented
tnninaw (bistabality is but mecosarYl To amuse ueganertio Of wingW one-dimensional modculators. such as aol-pai ls or

theaiftelaescpmthnerhsgta~hstamfechsactnisic lectroo-otitic modulators. andsa two-dimensional spatial light mod.
must exhibit g"i, satorstitan. and a threshold. Thesetk~sve haraoc- ualsaor. The reultant optical procensor avoid a~pu boottleneocksIteram, also affect the oise immunity. the croustalk toleranc. and mandated woith photodetector readout by generating only notatern
the gala deinsity. Twhe utiate lmitonhefan-out ofteahpgte is sleeantacofa. Two dffernt erhtactueshaebeendeveloped, a
determined by the output contrast ratio. The uniformity of the space-integrating architecture. in which the desired oil ane output
transfer characteristic over the SLM active eas is also Considered, in a temporal stream firom a single"ermenot detector, anod a hybrid
it has an effect on the yield of ther design and layout of a large circuit time-apace integrating architecture. in which the destired *,, accu-
ce promcer an the predicted erro rate, and on the above require- muiste ever a linear time* intepating photodetector saray. (13
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Residue number system holographic truth-table look-up
processing: detector threshold setting and
probability of error due to amplitude and
phase variations

M. M. Ktaiirae, C. C. Gutest, and T. K. Gaylord

7Uhe a of a holographic content-Addfemable mnemory systmm for parallel truth-table look-up digital data
processing ia analyzed. For binary-coded residue numbers, the operationse o*4-. 8- 12-. and 16-bit addition
and maultiplication are treated. The minimum probability of error that ean be achkwed and the correspond.
ing detector threshold settings ane determined in each case allowing for &he effects of Gaussian distrihutions
an the amplitude and the phase in the recording beams, Resultant probabilitiaa oferror foe practical condi.
liona mr found to be very competitive with thosae from state-of-the-art nonparallel technologiea.

L Introduction programmable logic array (PLA). For asum-of-prod-
ucts form, tlhe sequence of logic gates is NOT. AND. OR1.A. Truth-Table Look-Up Processing Electronic integrated circuit implementctions of PLAs

Moat functions. transformati=n, and operations may are. commonly achieved with large-scale integration
be represented by a binary truth-table in which the (LSI) and very large-scale integration (VLSI).
o utputs for all possible input com~binations are given. (3) Content-Addressable Memory. A truth-table

Direct implementation of truth-table look-up processors look-up processor may be implemented using a con-
was previously uncommon in data and signal processing. tent-addressable memory. In these systems. for each
However, in recent years it has become steadily more output bit, the combinationa of inputs are stored that
commonplace. There are three general methods used cause this output bit to bea logical one. The inputs are
for direct implementation of a truth-table. These compared with the stored tables, and detected matches
are. cause the appropriate output bits to be logical ones.

(1) Location-Addressable Memory. In this type of The sizes of the stored truth tables may typically be
truth-table look-up processor, the entire truth-table is greatly reduced using methods of logical reduction such
stored insa direct or location-addressable memory such as the Quine- McCluskey method' or the Tison algo-
as an electronic read-only memory. This isa straight- rithm.2  Content-addressable memories have been

- -forward implementation, but it is very inefficient in techniologically difficult to construct. However. optical
terms of required storage. holographic systems are natural content-addressable

(2) Hardware Logic Gates. A truth-table may be memories, and this optical technology appears to be
implemented directly without any memory look-up very promising for this type of application. 3 Optical
(hog h s of Boolean logic gates. Each binary holographic content-addressable-memory truth-table
output vralwhnrepresented as a sum of products look-up processing is analyzed in this paper.
(o product of sums) of binary input variables may he
implemented with three levels of logic in the form of a B. Resklue Number Sysiem

The use of residue arithmetic in computing has been
extensively studied over many years.44 Residue
arithmetic has a number of well-known advantag-.ous

________features. Residue arithmetic has recently been shown
The authors arm with Geoes~ institute of Technology. School of to be extremely efficient when applied to content--

Electrical Engineering. Atlanta, Georgia 30332. addressable-mzemory truth-table look-up processing.3
Received 14 April 1983. In residue arithmetic, the calculations associated with
OU13-6936M83/223583-1o0.001. each modulus are independent of the calculations as-
40 19W3 optical Society of Americs, sociated with the other moduli. For example, there are
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no Input or output carries between digits in residue
arithmetc, In esence, this mans that there is on*
(relatively mall) truth table moisted with each
modulus used. The range of numbers represented,
wbih js equal ta the product of the relatively prime
moduli. may be increased by simply including addi-
tional moduli (and their associated truth tables). The
residue numbers associated with each modulus may be
encoded in binary form. This produces a digtal (rather
than awno) processor with its mony accompanying
wel-known advantages. Thi binary-coded represen-
taton of residue numbers is used in this paper.

C. Residue Numrber System Holographic Truft-Table
Look-Up Processing

An optical holographic system functioning as a con-
tent-addressable memory to implement a truth-table
look-up processor that operates on binary-coded residue
numbers is analyzed in this paper. The operations
treated are addition and multiplication. These are the
basic operations required to implement most digital
procesaing algorithms such as the discrete Fourier
transform, I-D and 2-D digital filtering, matrix ma-
nipulations, power series evaluations. etc. To analyze
the complexity, functioning, and performance ofa res-
idue number system holographic truth-table look-up Fig. I. Holaosphk n ht able looakup prora. (a) recerding
processor to perform addition and multiplication for iheumth-tablehlhrgmms (b) poceing ofbinaqiiDutdata.

given word lengths, a number of pieces of information
are needed. These include

(1) the optimal set of moduli to use; pared with the stored patterns, and detected matches
(2) the sizes (memory requirement) of the truth ta- cause the appropriate output bits to be logical ones.

bles to be used; Output bit. for which no match is detected are logical
(3) the optimal threshold setting(s) for the detectors; zeros.

and By locating stored binary patterns that match the
(4) the toeal probability of error in performing an input pattern, the processing system functions as a

operation considering the optical wave amplitude and content-addressable memory.$ Other methods of
phase variations during recording. (During readout implementing content-addressable or associative
processing, only a single incident wave is needed, and memories optically have relied on producing cross cor-
so the system operation is insensitive to the amplitude relations by multiplication in the Fourier plane.9*t0

and phase variations in the reconstruction wave.) Such systems produce outputs that are analog in nature
The first two pieces of information are independent and ar; not specific as to which portions of the input

of the technological implementation of the system and field match the stored patterns. The type of optical
have recently been determined.? This necessary in- content-addressable memory analyzed here does not
formation is used in the analysis presented here. It is have the- diffkulties.3 Its operation as a truth-table
the purpose of this paper to analyze the performance of look -up processor is analyzed in this paper.
an optical holographic implementation of a residue The pasticular content-addressable memory system
number system truth-table look-up processor. In this treuted here is based on an optical NAND operation.
analysis, the optimal detector threshold setting(s) and Reference patterns are holographically stored and fixed
thc total probability of error are determined for the in a recording medium such as an electrooptic crystal.
addition and multiplication of 4-. 8-, 12-. and 16-bit The Boolean logical NAND operation is implemented
words, in manner similar to the holographic NAND operation

demonstrated by Preston.) In the NAND system de-
L $yslem Operatson scribed here, the reference beam steps sequentially

The truth-table look-up optical processor operates through a series of spatial positions in the input plane
on binr-y-encoded numbers. In the present case the of the Fourier transform configuration as shown in Fig.
numbers are binary-encoded residue numbers. Each I(&). Each reference beam position corresponds to a
system output bit is implemented ass a separate Boolean different reference pattern to be recorded. Each ref-
logical function of the input bits. This is done by erence pattern ia recorded by using a phase-shifting line
having input patterns from the truth table of each composer (a particulur type of spatial light modulator)
function that cause the outpu! bit to be a logical one containing one more eleuaent than the numb-r of bits
stored in the system. Inputs to the system are com- in each pattern. The extra element is designated as s
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mference bit and is set tk a phase shift of 0* for all re- for each detector (corresponding to a particular re;er-

cordings. AM the bita that are ones in the re:erence ence pattern) separately, or there may be only one
pattern are recorder; with a phase of 180 °, all the bits threshold value for the entire array of photodetectors.
that re src arm recorded with a phase of01 (the same In either case. it is necessary to know how the thresh-
phase sa the reference bit), and don't-care bits are not old(s) should be set in practice to minimize the total
recorded (spatial light modulator doe not pass light at probability of error. This, in turn. depends on the
that bit position). The light amplitudes associated with amplitude and phase variations about the required
all the one and zero bits are eoual. The amplitude as- values of the laser beams during recording of the ref-
sociated with recording the reference bit in R times the erence patterns (fabrication of the processor). Note, 'Cs
amplitude of each one tor zero) bit. where R is the total however, that when operated as a processor, the system
number of ones in the particular reference pattern being is insensitie to amplitude and phase variations in the
recorded. A complete reference pattern is recorded as beam that passes through the spatial light modulator
described for a single position of the reference beam. as i* is the only wavefront in the .ystem, and there is no
The reference bham is then stepped to a new location, need for precise control on this single beam that is re-
and a new reference pattern is entered into the spatial constructing the et of recorded holograms. During
light modulator and a holographic recording made. recording, the amplitudes and phases of the beams are

After all reference patterns are recorded, the phase- obviously of critical importance. In Zhe following sec-
shifting line composer is replaced by an on-off ampli- tions the optimal-threshold setting(s) of the detectors
tude line composer as shown in Fig. 1(b). The system and the minimum total probability of error in per-
is then able to function directly as a truth-table look-up forming addition and multiplication will be determined
processor. A binry data pattern is entered into the as a function of amplitude and phase variations in the
on-off amplitude line composer. For one bits in the beams during recording of the reference patterns.
input data pattern the spatial light modulator is
transparent, and for zero bite it is opaque. If (and only Il. Mathemtatical Model
if) the input data pattern matches a prerecorded ref-
erence pattern, then, upon reconstruction, there will be A. Distributions of t Recording Waves
wavefront cancellation in the direction of the particular In the following analysis, each recording wave is
referent* beam that corresponds to that reference considered to be a plane wave and. therefore, is repre-
pattern. This is detecte by an array of photodetectors sented by an amnDlitude in the complex plane (a phasor).
with each position in the arrey corresponding to a dif- The amplitude and the phase of each recording wave
ferent reference beam position during recording. Thus, (relative to the reference wave) are considered as two
each detector corresponds to a particular binary refer- independent random variables, and it iS assumed that
ence pattern, and when wave-front cancellation (a null) both have Gaussian distributions centered on the design
occurs at that detector, a match of the input data to that vahes. The Gaussian distribution is commorly as-
reference pattern has been found. Each recording may sumed when the deviation is caused by multiple phys-
bethought of as producing an optical NAND gate. The ical phenomena. This assumption is lased on the
phase shifts of the phase-shift line composer during funiamental (central) limit theorem in probability
recording determine which data bits during processing theor;.13 The probability density function for the ith
will be presented to the NAND gate in complemented wave contributing to the reconstruction can be written
f (tform(c ones in the input data pattern) and which will as
be presented in uncomplemented form (the zeros in the
input data pattern). During processing, the output of P, ,A -. -1ezpl-(o -a,) 2/2 i,lezp-(- , /2eLa.
the NAND operation then occurs in the detector array 2w,,.,
plane at the reference beam position for that re-
cording. where a and 9 are the amplitude and the angle param-

This form of processor may be extended to operate eters in polar coordinates, 6, and 6, are the design values
on many input data words simaltaneously (in parallel).3  of the amplitude and the phase which were expected to
The set of holograms recorded as described ab-)ve ray be recorded, and o, and a#, are the standard deviations
be read out using multiple binary amplitude line com- in the amplitude and the phase, respectively, from the
posers displaced above and below the recording plane design values. The angle 0 is measured in the range
of incidence so that the fundamental Bragg condition from (#j - r) to (0, + v) to prevent inconsistency at the C
is still satisfied.14 In other words, the lack of angular two limiting points. Since the amplitude should be
selectivity in the direction perpendicular to the plane positive (a > 0) and the phase is restricted to a 2r range.
of incidence for recording is used to allow the recon- use of a Gaussian distribution may seem at first to be
struction of the holograms by many input data patterns incorrect because the parameters do not have a variation
simultaneously. range of -- to +-. However, for any practical pro-

For the holographic truth-table look-up processor cessor o0 , << a, and o. << 21r, and these restrictions on
described, the detectors need only to detect whether the the amplitude aild phase have no significant effect.
light amplitude at that particular detector is above or As described in Ser. 11, three types of waves are re-
below the threshold value and this a zero or a one. re- corded. The firet two types correspond to I and O bits
spectively. It may be posible to set the threshold value in the recording pattern. They both have unit ampli-
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fti. r - 01o. The third type corrempondt' to the refer- done numerica.1ly. Fwc..disnensional convolutioni wre
*enee bit. its phase is the reference zero phase in the computationally intensive, so in our analysis, we re-
*system 16ir 0). and its, amplitude i. R, where R is the duced the number of operations by defining a window

number of 1 bits in the recording pattern j(IRE - R1. mnatrix for each phasor and convolving only the .Iements
Considering the physical construction of the processor. of these matrices. Fven this method requires large
it is asumed that the standard deviations of the phase matrices for practical cases, wh'ere the standard devia.

*for the threce types are equal, i.e., tins are small (a low percent). Through thc convolu.
Sinc thephaors - 2) tion process, the region. around the expected value of

each complex amplitude [Le., aroond the (!, .0) pointl
Sinc th phaorscorresponding to 0 and I bits are is of primary irr portance uin determining the final dis-

similar in amplitude, their amplitude standard devia- tributions. In this region, which is characterized by y
tionsare assumed equah Oand lxi :Y III >> jyj.the actual distribution given

(3 by Eq. (6) can be approximated by

The amplitude standard deviation of the reference bit P.,Y I - I-,'p(-( - r.I-/'.Iezp(-y2/24e'. (7)
L- a function of the value of R? and is assumed to be 2was..e .

= (k)I~where a~, M va, and a.. li, I a, are the approximatedA (4)values of the standard deviations of the new random
This assumption is based on the fact that the reference variables (x and y). The convolution of two Gaussian
bit can be considered as the sum of R independent distributions a given by Eq. (7) can be done analyvticAly
amplitudes, each of them having a standard deviation and results in another Gaussian distribution. That is.
of a.. From probability theory. tne variance of the sum if
of several independent variables is the sum of the (XY- I epfZ-f12/0
variances of each variable."4 therefore, a2, = a+ a.' Z) ex lt a'/e, s(y~~~) 8
+ ... R4 Although the conditions (2)-(4) have
been used in the present work, the method of analysis p&tZy) - expl-(z - Z2)2Its.,l tip(- y22j,). (9)
applies equally to other conditions that may occur. te* ~Having the probability density function of twcb he
constituent wave IEq. Oil,. the next step would be to P(X.Y] -p,(zX) *p24z.Y)

ind the density function cf the resultant phasor. The
resultant complex amplitude is obtained by the vecto- *2(, ff 3 I(f 1 + U)

rial auntn of the phaqors tlst are present during the ~-~ ~l/~iIreading process. In the 1-D case, if a random variable X 4lfr-(,+Fl/42,+4 101
istesmo w needn admvrals t lVt~density function can be obtained by convolving the This relationship can be extended to any number of
density functions corresponding to the two random Gaussian functions.
variables.", That is, if x = x I + .%x. tlhen p(x) = pi(x) To test the accuracyvof the above approximation, the

* pz(x), where P I, P2. and p are the density functions threshold analysis was performtd on both density
corresponding to xi, z , and z, and * representsq con- functions (Eqs. (6) and (7)] for different patterns with
volution. Tfhis property can be directly extended to the a range of standard deviations (a. ftat. a) from 0.04
2-1D case. Tlhat is, if two phasors a Iz Z4 jY I and 8a2 Wo0.11 with 0.01 intervals. Theresulashowed that the
-1 4 jyz are ind'!pendent, the dens~ity function of their threshold values corresponding to the two types of

sum phasor (a - a, + a,.) can be obtained by the 2-1) distributions become more nearly the same as a de-
convolution of the two density functions, creases. The percenttge deviation between them is

pz~v ffpah,.yp~l - z~ -v~d~dy. ~ <1% for a < 0.07.

To use the above property, a change of the random B. Optimumr-Ttveshold Condition
variables from amplitude and phase (a and 6) to real To deal with the problem of threshold setting, some
and ivnaginarv comlpone-nts (xrand y) is required. The terms which are useful inerror analysis are first defined.

*equivalent for~m of Eq. (1) for the new random variables These terms are introduced for 1-13 distributions as
would be: usually discussed"g and then are extended to the 2.13

1 case of interest
P, f 1,) *2t'+ Figure 2 shows two density functions centered at x

0*1 an x ylwhc crrsonlt teloiclstteS ci4-j~~ 4y~iI - ~l2Iu ~ and x -1hccoresp onivly If the tles old ia state 0
X 92Pl-Itan'1(tyiu - I,/.i 61 the detected big~nal is incorrect for a transmitted I if z

I * The density funiction of the resultant complex a-npli- <x~h and foratransmitw~difx > rh. Ifthecaseof
tude can then be obtained from the density f un :titpn$ interest is detecting as0. the first type of error results in
vf the constituent complex amplitudes by re'pcatinX the a false alarm, % bile the second type results in a miss.
convolutio ns many times as required. The probabilities of these two events are

35" AP'PLIED OVE1CS/ Vol. 22, No 22 I15 Nvvwibw 190I



To illustrate the problem of threshold setting, the dis-
tributions which correspondi to Fig. 3(b) are shown in

s~b. Pi. 4. Since the detectors respond to the light inten-
sity, the threshold corresponds to a magnitude w theI amplitude (0th). - The probabilities of miss and false
alarm are"*~

,,e P of"' f2* A11,)d~de. 14

where P0 and P, are the probabilities of the match and
%o. tothe ith mismatch, and po(a.0) and p, (0,) are the den-

sity functions corresponding to the match and the ith
Fis. 2. Frobahility densities in the I.D eae. A genoral-threshold mismatch cases. The parameter N., is the total num-

setting tz~h) ad the opiium thrershold setting Use) &is shown, her of mismatch cases. As In the previous situation, the
probability of error is obtained by adding the above two
probabilities:

P" -

The optimum threshold (a*) can he obtained bv solving
dP,Idath at 0 for at,, subject to d2Pe/dai, > 0. The

-. result is

P. p.(..Sdf - . Pi f p,(e..O)d. (16)

Fig . Is) Example phasor diagram shlwn the complex amUplitude Assuming equal probabilities for any possible pattern
atthe winvfront foreach bit. (b) Phasordtagnus shotng alosible in the input. Po - Pi - IlN, ,whereNo. (a, N., + 1) is

ieshan sipli degene acyl otfor. Nubr.~ the numher of possible input patterns. Using this, Eq.
dep~~scy(~hsor.(16) can he written as

P. =P, fpoiWX. P.,- J " s.: .. (11) f: .

where Plot and P. are the probabilities of false alarm
and miss, respectively, atud Pot and P0 are the corre-
sponding probabilities of receivng a I and aD0 (PI + P0

1 ). The probability of error in detecting a signal
correctly is the sum of the above two types of errors

P. -P. f"" pizdz W1Pof*pOzd. (12) .. -

The optimum-threshold setting izo) which corresponds
to the minimum error can he obtained by solving dP../ - .l
drth 0 for sl, subject to d7P./dxih > 0. The result -tj
is Po~zo)Ipt~o) -P,/Pa. For the special case when the ' "I 4
probabilities of receiving 0and 1 are equal. i.e.. P0 - P, !j
the Optimum thresthold is at the intersection of the two .
density functions. , ...

The present case involves 2-D rather than I -D dis- /
tributions. To illustrate thoi analysis, the simple case
whire thermodulus i 4and the recorded pattern is 1010
is considered. The corresponding phasor diagram is
shown in Fig. 3. In the reawlang process, if the input
pattern matches the recorded hologram, the resultant
complex amplitude has a distribjution around the origin- Fig. 4. Probability density function af the resutant ortmples am-
Any other input pattern resulti; in a mismatch case. plituder ore..pndag tow the binary pattern, 303. The optimum.
where the resultant complex amplitude has a distribu- thresholud amplitude setting iot thown. Thu. figureus piunedfioorthe
tion around a positive integer numher on the real axis. 0. - . - 0.10 cae.S
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The aow equation as that the optmum thireshld,,•:."
(oe has thefollowing property. If a circle centered at
the origin with radius.a. is chosen as the contour, the .
contour integral of the match case density function is
equal to the sum of the contour integrals of the density -
functions corresponding to all the mismatch cases.
Having the denaity functions of the mutch and the
miatch cases the optimum threshold can be obtained
by solving Eq. (17) using a successive numerical ap-proximation technique. The summattion in Eq. (17) is

over all the mismatch cases. However since o.ir <c u-%

the match distribution have a significant effect. The L"
term "newrest mismtch" is used to represent these" ,,,

cases. Unlike the I-D case, the optimum threshold
which is obtained from Eq. (17) in ger.eral is not at the Fig.& Probbilitydnisl aotg Ae alk oi .Fig 4. Tb.po.
intersection of the match and the sum of the nearest ai'onof te oimum amPlitude thtsbod aeui (so). and b. two
mismatch distributions. This is illustrated in Fig. 5. ampItude ettiAlaIP doe twice the optium errw I- W

ael indkcwI.

C. M~t&ods of Threshold Setting
Two -.-tthods of threshold setting have been inves- associated with the outcome for each modulus are in-

tigated. These are called the separate-setting and the dependent of the other outcomes. Following the same
ommor. setting tchniques. In the separate-setting argument, the total probability of error for the processor

techniq-,, each detector is set to its own optimum (P.) would be
threshoid value, which is obtainable from Eq. (17). In
the coml on-setting technique a single setting is used P,. I - ]T :" - P.O,.. (2)
for the entire array of detectors This value is chosen ,-a,.- ("-
so that the total error in reading the output word is where the index i is added to indicate different moduli,
minimized. Each technique has its own advantage, and I is the number of moduli used in the processor.
The separate setting would result in smaller error val- For the practical case, where P1, << 1, the second- and
ues, while the common setting would be easier to in- higher-order terms can be neglected, and Eq. (20) is
strument. reduced to

0. Tolal Probablity of Error P. 2 42)
The probability of error for one detector was dis- -,,,-

cussed in Sec. l11.B. Depending on the modulus used, This shows that the total probability of error for the
each output word has a number of bits, and each bit is processor can be obtained by adding the error proba.
determined by the combined action of a group of de- bilities of all the detectors.
tectors. To read the output word correctly, all the bits E. Error Analysis for Reduced Truth Tables
must be correct. This requires that the corresponding
detectors individually detec: correctly. It is assumed The iogical reduction of truth tables is a central issue
that (1) the error for each detector is independent of the in this type of processor since it determines the mini-
errors for the other detectors of the same bit. and 12) the mum number of required holograms. 7 In the reduced
error for a bit is independent of the errors for the other truth table, don't-care bit positions appear in some
bits. Based on these assumptions, the probability of input words. In recording a pattern with some don't-
correct detection of the output word (P,) is care bits, the positions of the don't-care bits are opaque

at the page composer. In the reading process, the bitsX4 . at these positions, therefore, do not have any effect on1, ,-1 the resultant wave.
where J is the number of bits in the output word, and The error analysis for the red% od case is more com-
Ki is the number of detectors corresponding to thejth plicated than for the unieduced case. Since each -
bit. The parameter P, o, is the probability of error for don't-care bit can be replaced byeithera0ora lif the
the lrth detector corresponding to the jth bit. Thim number of don't-care bits in a hologram is Nd, there
parameter can be obtained by the method discussed in would be 21v patterns which match that hologram.
Sec. lll.B. Using Eq. (18), the probability of error in The number of nearest mismatch patterns is also al-
the output word would be tered. Disregardtng the positiois of don't-care bits. the

nearest mismatch patterns can be divided into two
Po. - -P. . I i It- P.,I. (s) groups: (1) the ptterns which are similar to the match

t.I h-" case w'th the exception of having one 0 in the place of
For the processor to have a larger dynamic range, a one I; and (2) the patterns which are similar to the

set of moduii is selected. It is assumed that the errors match, case with the exception of having one 1 in the
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' ' probability of error for the separst-threshold setting•

tochnique can he obtained from Eq. (19) using the
minmum value. from these curves. To rind the opti-
mum threshold fot the common-threshold setting
technique, the composite P. vs at, curve is obtained

ire from the individual curves using Eq. (19;. The result
is shown as the dotted curve in Fig. 6. The minimum -n
point of this curve is the optimum choic. As can be
seen, the threshold setting is primarily determined by
the curve with the largest reference bit size.

The probability of error for the addition and multi.
plication processes with moduli 2-23 was calculated for

.4 .4 " ,, ,, ' two values of standard deviations (a. -a-0.01eand
we so 0.02) and for both threshold -setting tech-

Fig. 6. Characteritic probability of error curverteponding to niques. The results are given in Tables I and 11 for
do logically reduced truth table for the addition operation with unreduced truth tabok and Tables III and IV for re-
modulum4. Thep.rameterofcursl-4arnl)R-IN,.-6.Nj "duced truth tables. These tables also provide the
*I:(2)R -N.N.5.N -2;(3)R-2.N.- 4.N-0.&and(4) number of required hologram and the optimum
Rf -4. N,, -4. Nd-0. The corrnpondm1n degeneracies of rvmes threshold value f(r the common-threshold setting
1-4 are 4.2.1.1. respectively. The dotted curve corresponds to tht technique in each case. Since the list of the optimum
probability of ener for the common-threhold etting. technique, threshold values for the separate-threshold setting

This figure is plotted for the a. - so - 0.05 can. technique is very long, it is not reported in this paper,

place of one 0. In the first group, each don't-care can however, the corresponding probabilities of error are
be replaced byeither0or 1. The number,)f this type, provided for comparison. Analysis of these tables
therefore, increases by a factor of 2Nd. In general, this produces the followig conclusions:
is not the case for the second group when residue (1) The probability of error for both threshold-set.
arithmetic is used since some of the patterns correspond ting techniques strongly depends on the largest ampli.
to numbers greater than or equal to the modulus and, tude of the reference bit (R...) among. the recorded
therefore, are not allowed. Since, in general, the holograms. Probability of error calculations for dif-
number of nearest mismatches is not predictable, an ferent moduli that have the same largest reference bit
exhaustive computer search is used to count all the amplitude (regardless of the operation being imple-
possible cases for each pattern for a specific operation mented) will result in nearly equal error probabili.
with a specific modulus. Considering the above two ties.
effects (increase in the num)Wr of match and nearest (21 The optimum threshold for the common-
mismatch case.), the method of error analysis would be threshold setting tecmique strongly depends on the
similar to the unreduced case- largest reference bit amplitude (R..).%

(3) Although the probability of error in all cases is
IV. Results smaller for Jhe eparate-thrzehold setting than with the

common-threshold setting, the two values are similar.
A. Probability of Error for a Sigle Modulus As a result, a simple detector array using the common- J

To analyze the effect of amplitude and phase errors threshold setting technique would not produce a sig-
on performing a particular operation with a particular nificant increase in the probability of error.
modulus. a list must fust be compiled of all the reference (4) Comparison of Tables I and II with Table. Ill and
patterns that must be recorded as holograms. Each IV results in the conclusion that applying the reduction
hologram is characterized by three parameters. (I) the techniques has the benefit 'f both reducing the number
amplitude of the reference bit (R); (2) the number of of required holograms by a large factor and significantly
nearest mismatch patterns (N4 ,,); and (3) the number decreasing the error rate of the processor.
of don't-care bite (Nd). If these parameters are the (5) The probability of error occasionally decreases
same for two different reference patterns, the probe- with increasing modulus size. This occurs either be.
bility of error for a given threshold setting will be the cause (1) the truth table for the larger modulus has a
same at their corresponding detectors. For each case, smaller R, (producing a large decrease in error) or (2)
a curve of probability of error vs threshold setting is R.., is unchanged and the number of truth-table
obtained by doing the required convolutions and vol. entries associated with R.. in the larger modulus is
ume integrations as described in Sec. Ill. smaller (producing a small decrease in error).

For illustration, the four characteristic error curves
that correspond to the logically reduced truth table for B. Total Probablty @f Ero for a Set of Mol
the addition operation with modulus 4 am shown in Fig. To increse the numerical range of the proceesor. a f
6. As can be seen, the probability of error varies dra- set of relatively prime moduli may be used. The cov-
meticaly with the threshold setting. This dependence ered range is equal to the product of the individual
becomes more pronounced for smaller values of as and moduli The selection rules to choose a moduli set de-€l Considering the degeneracy of each curve, the pnds on the parameter that is to be optimized. Since
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TlOWL oe. agrdun, n ,0eo m m omduli sets. th total probabilities of error were calcu.

Pa %... G.,,•". deviation@ in amplitude ad phase during recording.
The results are presented in "Tables V and V1. These

a 464-. "- g. se" . I-.. tables show that the total error probabilities for this•:i
Leg . 9..-wll. e..r"I ,.. ,..t ,M.e.• W processor with a standard deviation of 0.01 in both
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With the addition of appropriate error detection and 16-bit addition and multiplication were analyzed for
correction bits, these raw error values can be improved binary-coded residue numbers. Setting each detector
by more than an order of magnitude. In addition, the threshold to its optimum value (separate-threshold
number of required holograms is within the state-of- setting technique) or setting all detector thresholds to
the-art for volume holography in electrooptic cry.- a single optimum value (common-threshold setting

Ws. technique) is found to produce very similar probabilities
of error. Optimum detector threshold amplitude set-
tinge are typically -6r% of the amplitude of a conipo-
Dent wave corresponding toa single bit. For practically

V. Sumaryachievable standard deviations in the amplitude and
The operation of a holographic content-addressable phase about the design values. the reultant probabili-

memory system for truth-table look-up digital data ties of error are generally <10O4. Using logically re-
processing was analyzed. The effects of Gaussian dia- duced versions of the truth tables typically results in a
tributions in the amplitude and phase of the recording significant decrease in both the probability of error and
beams were treated. The operationsof 4-,8-, 12-, and the number of required hologams.
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CHAPTER I

INTRODUCTION

Architectures for optical holographic digital

parallel processing systems are presented and examined . .

theoretically and experimentally. The theoretical

examination focuses on the efficiency with which information 1W

required for processing can be stored within the optical

system. The experimental studies demonstrate the principles

of the system and examine factors that affect its

statistical reliability.

Motivation L baThesis

Today there is a large and growing need for

computational power that remains unsatisfied despite the

advances of data processing over the last two decades [11.

Among the technical areas that would have immediate

application for increased parallel computational ability are

remote sensing, seismic data interpretation, nuclear and

• molecular physics simulations, meteorologyr air traffic

control, synthetic aperture radar, missile guidance, and

defense early warning systems 12,31. Solution of problems

in these areas requires identical operations to be performed

on large arrays of numbers. Therefore, investigation of new

. . . . .-.. . . .,
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methods to process many sets of data in parallel represent

important and timely research.

Optical data processors are attractive for parallel

operation because they provide naturally the communication

paths that limit electronic parallel designs. One of the

earliest investigators to realize the potential of optical

digital process'ng was Preston [41. He 4emonstrated how

elementary logic operations could be performed using

holography to produce lightwave phase interference at the

detector plane. Gaylord, Weaver, and Magnusson made use of

a Boolean Exclusive Ox function in their proposed parallel

optical word/signature detector 151. The same principle is

used in an integrated optical device built at Battelle

Laboratories designed to analyze spectral data 161. Also,

Buignard et al.171 have shown that the result of an

Exclusive Or operation performed in parallel on two entire

pages of data can be recorded directly as a thick hologram

in an electrooptic crystal. The.Tse computer was an carly

attempt to perform parallel digital computation using optics

18). By connecting arrays of electronic logic elements with

bundles of optical fibers it achieved parallel operation,

but failed to take advantage of the natural parallelism of

optical imaging systems. Goodman has developed an optical

processor that uses the natural parallelism of optics to

1.:2,
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perform matrix multiplication of numbers recorded as analog

photographic transmittances 19,10). A related class of

analog transmittance processors using acoustooptic input

devices and Iterative numerical techniques ts under

development by Casasent (11,12). Another form of analog

optical feedback processor in the work of Cedarquist and Lee

has been used to solve partial differential equations (131.

Knight has suggested an optical digital processor based on

an associative memory 1141. The structure chosen for the

memory permits only bit-serial operations to be performed.

An optical processor for conversion between binary and

residue numbers and for addition of residue numbers also has

been proposed 115]. Another type of processor, being built

by Collins et al., uses the cyclic nature of optical

lightwave-phase to perform parallel additions in a residue

number system 116,17). There is considerable interest in

the Soviet Union in optical digital processing. The .

emphasis there is largely on building fast adders and

multipliers from the elementary logic functions that can be

produced using controlled transparencies in various

configurations (18,19]. Although each of the processors

mentioned zepresents a substantial contribution to the field

of optical processing, none of them combine the power of

parallel processing with the accuracy and flexibility of

digital operation. Buang has presented a concept for a very

.... .
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general highly parallel digital optical processor (201, but
the technology to implement the processor and the algorithms

to apply it to numerical problems are currently uncertain.

Reviews of the area of optical digital processing can be

found in References 21 and 22.

Raftic QnnSMSU and ngfinit±ins
Two forms of the holographic digital optical

processor are treated in this thesis. The forms will be

referred to by the primary optical logic funtion each

perf;rmsj one will be known as the Exclusive Or pcocessoc,

the other as the Nand processor. Included in both forms is

an input device, lenses, a recording medium, and an output

device. The input device will be called a line or page

composer, and consists of a one- or two-dimensional array of

elements. Each element may be controlled to alter the

phase, or amplitude, or both, of light passing through it.

Both forms of the processor use two Fourier transform

lenses. This appellation results not so much from the

construction of the lens, which can be simple convex in

form, as it does from the position and use of the lens in

the system. The hologram recording medium is an

electrooptic crystals specifically, lithium niobate was used

for the thesis experiments. The output device is a one- or

two-dimensional array of detector elements. Two coherent

beams of light are used by the processor. The beam that

.. . . . .... . ..



passes through the input mask is called the object beam, the

other Is the reference beam.

The function performed by the processor is defined

during the fabrication, or hologram recording, stage. The

function is performed on sets of input data during the

operation stage. Information recorded during the

fabrication stage is entered as reference patterns

represented in the input mask. During the operation stage,

the input data to be processed define the input mask

patterns. These stages are analogous to fabricating an

integrated circuit, and then using the integrated circuit to

process data.

Information holographically recorded during

fabrication comes from the truth-table of the digital

operation that the processor is to implement. Each bit of

the processor's output word has an associated truth-table

that determines the bit's logic state based on the input

data. The recorded information represents reference

patterns that are compared with data to be processed. The

presence of a matching pattern among the reference patterns

stored for a particular output bit produces an indication if

the output should be trues a binary one. The absence of a

match implies the output is false: a binary zero. The

optical processing system functions as a content-addressable

memory by searching all stored reference patterns in

Parallel for those that match the Input data. Operation of

-o. ... .
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the processor should not be confused, however, with optical

associative processors that operate in an analog manner.

Considerable savings of the amount of truth-table

information that mcst be stored can be obtained through

logical reduction of the truth-tables and through use of a

residue number system representation of the input and output

data. The process of truth-table reduction introduces

Odon't care* bit positions into some of the reference

patterns. These positions are ignored during the pattern

matching operation.

Over~efew gj Thqsis

The following sections present a detailed review of

the work that has been performed for this thesis. In.

Chapter II, the concepts of operation for both forms of the

processor are presented and compared. Chapter III addresses

the problem of efficient storage of truth-table information

in hologram recording. The results of a computer study on

the effect of truth-table reduction and the use of different

number systems are presented. In Chapter IV# the equipment

used in the experiments and its arrangement are explained.

The experimental procedures used and the results obtained

are presented in Chapter V. In Chapter VI, results of the

computer and experimental studies are summarized and the

prospects for optical digital parallel processing are

assessed.

Jr-.. ..
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CHAPTER II

THE OPTICAL PROCESSING SYSTEMS

Pyz-lugivL Q1 Pracpsaing

The operating principles of the Exclusive Or

processor are presented in this section. A schematic

diagram of the arrangement to record the holograms is shown

in Figure la. Transparent and opaque apertures in the input

mask represent binary ones and zeros respectively. Each row

in the mask represents a pattern of input bits that produces

a logical one in the truth-table for the output bit.

Figure 2 shows the truth-table used to create the mask in

Figure la. An object beam of coherent light passes through

the mask. The two-dimensional Fourier Transform of its

transmittance pattern is produced inside the electrooptic

crystal by the lens. The reference beam forms an

interference pattern with the transform and the resulting

fringes are recorded in the crystal by the photorefractive.

effect 123j. When the illumination is removed, a space

charge pattern remains in the crystal. The electric field

produced by the pattern modulates the refractive index of

the crystal through the electrooptic effect to produce a

phase hologram of the mask. To process data, the input bit

pattern is placed in every row of the mask, as shown in

.. 2 oON• ..o-. ... . . . . . . . . . . .. . . . .-. .-.. . . . . . . . . -.-. . . . . .,.• . .._. ..o , % o . -. • '% ."%- - -
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FIGURE 1. THE "EXCLUSIVE OR' BASED PROCESSOR fal RECORDING H4OLOGRAM OF
TRUVN.TASLE PATTERNS. (b) EXAMPLE OF DATA PROCESSING WITH INPUT
DATA THAT DOES NOT MATCH ANY RECORDED PATTERN, It) EiXAMPLE OF
DATA PROCESSING WITH INPUT DATA THAT MATCHES ONE RECORDED
FATTERN.
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Input sis Output eit

0 0 00 0
0 00 1 1
0 0 10 0
0 011 0
0 10 0 0
0 10 1 0

0 111 0

1 10 00 0

101 0
10 0 0

1 0 1 0
1 110 0
1111 0

FIGURE 2. TRUTH-TABLE USED FOR PROCESSING EXAMPLE IN FIGURE Ila). INPUT
BIT PATTERNS INCLUDED IN THE RECORDED MASK ARE MARKED WITH
A



figure lb. The object beam passes through the new mask, the

first lens, the crystal, a second lens, and falls on the

detector array. A direct image of the input mask is

produced at the detector plane with the undiffracted object

beam. Simultaneously, the reference beam is holographically

diffracted producing a reconstruction of the original mask

at the detector plane. The net complex amplitude result

depends on the relative phase and amplitude of the object

and reference beams. For all cases of interest, the

relative amplitude of the two beams is adjusted so that, at L

the detector plane, light from each of them is of equal

amplitude. At the detector plane there will be, in general,

array element locations where either the object or reference

beam contribute light, or both contribute, or neither. If

the relative phase of the beams is adjusted so that light

from the mask image and from the hologram reconstruction is

in phase at the detector array, the result represents the

Inclusive Or of the-input data page and the stored data

page. This assumes that singly and doubly illuminated

detector elements are counted as logical ones, and

unilluminated elements are logical zeros. If the phase of

one of the beams is adjusted so that the two waves are 180

degrees out of phase at the detector, then destructive

interference will occur at detector elements receiving light

from both sources. Elements will be dark if both or neither

of the data masks were- transparent at that location, they

.. , .S .... ..
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viii be bright if just one mask was transparent. This

result at the detector plane is the Exclusive Or of the two

data pages and this may be used for numerical processing.

The Exclusive Or of any binary word with itself results in a

word of all zeros. Recall that each row of the stored data

page Is a pattern of input bits that :auses the output bit

to be a one, and the current input data bit pattern is

repeated as each row of the input mask. Therefore a match

between the input data and one of the stored patterns is

indicated at the detector plane by an entire row of dark

elements. The detector elements may be connected so that

the presence of any entirely dark row causes an electrical

indication that the output bit ia a logical one. The

logical expression performed in parallel by the Exclusive Or

processor for each output bit is given in Equation 1.

o - tiePu, ...V(Ite?)1A.. *A (lisp )v... V(Z ? (1)

where:
0 Is the output bit
kI the kth bit of the input data
P 1 the kth bit in the jth row of the recorded

kJhologram
a is the number of bits In the input data
a Is the number of rows in the recorded hologam
pattern

. Is the optically performed Exclusive-Or operation
v is the Or cperation performed by the detector
A 1m the And operatlon performed by the detector

Figure lb shows an example of data processing where the

input word does not match any stored patterns Figure lc

..........---... . .
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shows the case of u match.

As Vill be explained fully in Chapter III, a

desirable reduction of information holographicalli stored

can be achieved with truth-table reduction. This process

introduces *don't care* bit positions ir, the reference

patterns that must not affect the matching operaticin; if all

other bits in a reference pattern match the input data

pattern, then a match must be signalled regardless of the

state of the input bits in the "don't care" positions. This

can be accomplished with the Exclusive Or processor by

modification of the detector array. Detector elements in

"don't care* positions should behave as if no light is

falling on them, independently of the presence or absence of

light. Placing a mask, opaque at the positions of the

*don't care* bits, directly in front of the detector array

is a simple way to achieve this.

Rad Rroessn2

The Nand form of the proceseor is capable of more

compact and powerful optical numerical processing. A

schematic representation of the optical system used for

* . recording its holograms is shown in Figure 3a. The data

mask in this case is a single row of elements. Each element

- can be transparent or opaque and can shift the phase of

light by either 0 or 180 degrees. For each output bit of

the system there is a row of positions that the reference

* *"1

.°* . . . . . .
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beam steps along for hologram recording. At each position a

different pattern of input bits that cause the output bit to

be a one is used tc control the amplitude and phase

properties of the mask. The details of this will be

explained in a subsequent paragraph. Holograms are recorded --

in the electrooptic crystal by the interference of the

reference beam and the objat beam. For numerical

processing of input data, only the object beam is used. The

input data mask is of the same form as the mask used for

hologram recording, but need not have a phase shifting

capability. The mask elements are transparent or opaque in

response to the ores and zeros of the input data word. As a

result of the way the holograms are recorded, light from the

input mask combines to form optical Nand operations at the

detector plane. Only if the input data match a recorded

pattern will a dark position occur at the detectru. The

detector elements can be connected so that a single darkened

element provides an Indication that the output bit is a

logical one. Figure 3b shows an example of data processing

with the input data matching one recorded pattern.

An example of determining the state of the input mask

from a truth-table entry is shown In Figure 4a. The input

mawk has one element more than there are input bits to the

numerical operation. This extra element Is calle- the

reference bitl it is always transparent and its phase is

,55.-

.................................,................ .... ...................................................... ..... ..........- , :-
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FIGURE 4. (a) EXAMPLE PIIASOR DIAGRAM FOR HOLOGRAM RECORDING IN NANO-WAED
NUMERICAL OPTICAL PROCESSING. (b) PHASOR DIAGRAM SHOWINQ POSSLE
RESULTANT AMPLITUDES AT A PARTICULAR DETECTOR. NUMBERS INDICATE
DEGENERACY OF PKASOR.



defined to be zero degrees. Elements in the mask

corresponding to *don't care positions in the input word

are made opaque. Elements that represent ones are

transparent and are shifted in phase by 180 degrees,

elements that represent zeros are transparent and have a

phase of zero degrees. The hologram of each of the bit

positions is recorded in the electrooptic crystal by

interference with the reference beam. All holograms are

recorded to the same diffraction efficiency except the

reference bit; it is recorded to N times the amplitude

efficiency of the others, where N is the number of ones in

the input word. This can be done by passing more intense

light through the reference location, or by recording it for

a longer period of time. When holograms for all the

required truth-table patterns have been recorded, the

processor is complete and data processing. may begin. Light

from the transparent locations of the data mask reconstructs

a subset of the recorded holograms. The light reaching any

detector element will have one of a number of possible

amplitude states, as shown for this example in Figure 4b.

But complete deotructive interference will occur to produce

darkness at a detector element only if the input data

pattern matches the corresponding recorded pattern.

Conceptually, the recorded holograms may be thought of as

... .tninq the connection of input bit positions to an

optical Nand operation. Positionu it are zeros in the

S ° . . • . -. . . .o , . . .S . .. . . . . . . . . . .. . .
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recorded pattern are connected in complemented form, ones

are connected in uncomplemented form. Determination of the

state of the input composer is shown for an example in

Figure 3. The logical operation performed in parallel by

the Nand processor on the input bits is given in Equation 2.

0- ICzL*O,,)*...aCI ,U)I^...ICz1$,.)*...* .)3 (2)

vhere-
o Is the output bit

1k Is the kth bit of the tnput data
I~I s the kth bit of Jth recorded hologram pattern
n"Ls the number of bits in the Input data vords
a is the number of holocrams recorded for the output

bit
I 1s the Identity function

* is the optically performed Nand operation
A In the And operation performed by the detector.

The explanations given for the operation of both

processing systems dealt with only a single output bit.

Practical parallel operations require simultaneous

production of many output words, each composed of multiple

bits. The principles of parallel operation are essentially

the same for both forms of the processor. Page composer

locations for bits in the same output word should be

arranged along the plane of the hologram recording beams.

rot the sake of discussion, and in the following figures,

this is assumed to be the horizontal plane. A single set of

. . .. . . . . . . . . . . . .- L
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FIGURE 5. DIAGRAM OF THE CONCEPTUAL WAY RECORDED HOLOGRAMS
DETERM!NE THE CONNECTION OF INPUT BITS TO THE OPTICAL
"NAND" OPERATION. (a) LOGIC RECORDED HOLOGRAPHICALLY
FOR TRUTH-TABLE ENTRY OF 1010. (b) RESPONSE OF SYSTEM
TO A NON-MATCHING INPUT. 1c) RESPONSE OF SYSTEM TO A
MATCHING INPUT.
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holograms may then be used to process multiple sets of input

data stacked In the perpendicular (vertical) direction.

Simultaneous processing of multiple sets of data is possible

because holograms display little angular selectivity for

light displaced along the direction perpendicular to the

plane of the recording beams. Diagram. Indicating the

recommended arrangements are shown for the Exclusive Or

processor in Figure 6. and for the Nand processor in

Figure 7. in both figures, the Fourier transform lenses

have been omitted to simplify the diagrams. A theoretical

analysis of the reconstruction of data page holograms with

displaced beams [241 has provided convincing support of the

feasibility of these configurations.

Even this degree of parallelism makes use of only a

fraction of the capability available. For the Exclusive or

processor, It is conceptually simple to record reference

patterns for different operations with the reference beam at

different angles. Then different processing operations may

be achieved by altering the angle of the reference beam

during readout. For both forms of processing, only a single

physical location in the crystal has been considered so far.

If the size of the data mask Fourier transform at the

crystal will allow, several independent sets of holograms

can be recorded at different locations in the crystal.

Processing at all these locations could be carried out in

parallel.

..................... ... *.:. ...
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nizeamian gL Proessing fiyjtaa

The differences apparent betveen the two forms of

processing discussed suit them to different types of data

processing applications. The principle strength of the

Exclusive Or processor is that it makes available at the

detector array the bit-by-bit comparison of the input data

with the stored reference patterns. This makes it ideal for

a word/signature detection operation. Fabrication time is

short since all reference patterns for a given operation are

recorded as a single hologram. Also, no preprocessing of

reference data patterns must be performed. Anothr useful

*" ( feature is that many sets of reference patterns can be

angularly multiplexed into the same thick recording medium.

The operation performed by the processor then can be changed

simply by changing the angle of the reference beam.

The advantages of the Naad processor are that for the

same numerical operation, it requires a smaller input page

composer and a smaller detector array thcn the Exclusive Or

processor. This makes.it possible to process more channels

of input data simultaneously. This advantage makes the Nand

processor the appropriate choice for most demanding parallel

numerical computation applications. A further advantage is

that only one beam of input light is used for processing.

Thus concerns about the relative amplitude and phase of

multiple beams are eliminated when the processor is used.

~~~~~~~~.. . . .. . . . . . . . . . .......... . . . . . . . . . . . ° • . . . . o . . , ° . . . . . • .-
.'.*o " p*. * " .4z ". -. ' . -. _ ___ _.', -- ' _,. -. .- -" ' ' °;-- ................................
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Although such concerns do exist during fabrication of the

processor# it is generally much easier to control the

fabrication environment than the application environment.

Though this thesis is not intended to specify the

details of construction for a fully operational proces3or,

certain examples of possible implementations for various

components have been used to guide development of the - -

concepts. The actual data processing that occurs requires

only the time needed for light to pass from the input plane

to the output plane. In fact, processor operation could be

pipelined by presenting data to the system at intervals

determined only by optical path length differences throagh

the system. Thus the operating speed of any practical

system will be set by the cycle rate of the input and output

devices. The fastest modulators currently available are .

based on the electrooptic effect. They are capable of

switching in 10-6 to 10 - seconds. Although suitable arrays

of such modulators do not currently exist, there is no

conceptual reason that precludes their production. Optical

detectors that operate in the range of 10-8  seconds are

currently available, so they should not be the limiting

factor. From considerations of the number of reference

patterns recorded that are presented in Chapter III, the

number of parallel channels of data that might be processed

ranges from 100 for Exclusive Or processing to 1000 for Nand

*..* * - . 4



ptoceezing. Therefore, a processing rate of 10 to 10

operations per second may be projected. The operation

implemented may be simple addition or multiplication, or it

could be evaluation of a.: entire polynomial Including

several additions and multiplications. Other presentations

of Exclusive Or and Nand optical processing can be found in

References 25, 26, and 27.
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CHAPTER III

Both the Exclusive Or and the Nand processing systems

operate on the principle of truth-table ldbk-up. The

digital operation to be implemented is represented by a

truth-table relating output variables to input variables.

Information culled from this truth-table is stored in the

processing system in holographic form. Generally, the

greater the number of input variables in the chosen

operation, the larger the truth-table will be. In

particular, output variables that depend on. many input

variables will require large truth-tables. For Exclusive Or

processing the number of reference patterns recorded affects

the size of the input page composer and the output detector

array. For Nand processing the number of reference patterns

affects the number of holograms that must be recorded.

References 28 and 29 deal with the relationship between

truth-table information storage and the optical processing

systems.

In either processing system, the capacity available

to store truth-table information is limited. The

information storage capacity of thick holograms recorded in

..... ..... ..... ..... ..... ....
. . . . . . . . . . . .. . . . . .- . . - . . . . . . . .
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electrooptic crystals has been extensively investigated 130,

311. It is important to determine the storage capacity

required to implement useful operations, and to investigate

methods of minimizing the truth-table size for a selected

operation. The information obtained is useful not only for

the optical processing systems currently under

investigation, but for any direct logic implementation of

digital processing, regardless of the technology used.

Design of very-large-scale integrztion (VLSI) circuitry and

the use of Programmable-Logic Arrays (PLA) has generated

renewed interest in truth-table minimization.

Two methods, which can be used in combination, have

been used to produce substantial reductions in truth-table

size: logical reduction of truth-table representations, and

implementation of digital operutions in a residue number

system. Both methods will be presented in detail in the

following sections.

ZTruth=abj* Redution

Before considering truth-table reduction methods and

effects, the general strategy for truth-table look-up

processing will be reviewed. In a conventional truth-table

Nwith N input variables there will be 2 entries. Each entry

specifies the state (one or zero) of the output bit for a

different pattern of the input bitz. The pcesent analysis

assumes multiple-output systems are constructed by grouping

S-67
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independent single output systems. This is not a necessary..

assumpt,in, but is a practical one for the processors

considered. For a digital operation that has N bits in the

output, N independent truth-tables will be stored.

Truth-table look-up processing can be implemented by storing

the entire truth-table for each output bit of a digital

operation. A set of N input bits is grouped to represent

two (N/2)-bit input numbers, the output bits represent the

result of the digital operation, for eample the sum or

product of the input numbers. When data is pre3ented to be

processed, the truth-tables are searched for the recorded

input data pattern that matches the set to be processed.

The corresponding output bits from each of the tables form

the result of the operation. An example truth-table with

three input bits and two output bits-is shown in Figure Ba.

Slnre the output bits can assume only one of two

states, a significant reduction in the amount of 'ruth-table

information stored is possible by including only those input

combinations that result in an output of one, or only those

that result in zero. These are referred to as the

unity-result and the null-result truth-tables respectively.

For all the truth-tables in this study, significantly less

than half of the ouput bits were ones, so only input

combinations producing an output of one were included.

Examples of unity-result truth-tables are given in

Figure 8b. Stored tables are searched for the current

*1-48
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pattern of input bits. If it is found, the output for that

table is a one, otherwise the output is zero.

Further reduction of truth-table information can be

achieved by storing only minimal prime irplicant coverings

of the unity-result (or null-result) truth-table. The

current input pattern is presented to ach of the stored

prime implicants. If any of them prrdices a match, then the

output for that truth-table is a one. The only difference

between finding matching patterns in a unity-result

truth-table and in a prime implicant table is that certain

input bil positions may be ignored when natching prime

implicants. These bits vary in number and position from

implicant to implicant. Both forms of the optical

processing system can work with unity-result truth-tables

and with prime implicant tables. A simple example of

truth-table reduction is shown in Figure Sc through Be.

The process of determining a minimal prime implicant

covering from a unity result truth-table has been studied

extensively 132,331. Two common algorithms used are the

Karnaugh map and the Quine-McCluskey method. The former is

a graphical method and proves impractical for functions of

more than five or six input variables. The latter is able

to handle any number of input variables, but when programmed

on a computer it is quite inefficient in terms of execution

time and required memory. To determine the feasibility of

. . . .. -.
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implementing useful digital operations on the processing

systems the amount of reduced truth-table information for

those operations must be known. Obtaining this information

necessitated the reduction of very large truth-tables, up to

sixteen input variables in some cases. Several algorithms

of increasing sophistication were used to reduce

truth-tables. The process of truth-table reduction

separates into four tasks: 1) create the complete

truth-table for the desired operation, 2) find the prime
L

implicants of the truth-table, 3) build a "table of choicem

indicating which prime implicants cover which entries in the

initial truth-table, and 4) construct a minimal prime

implicant covering from the table of choice. The first and

the third processes are straightforward and consume

relatively little effort. The second and the fourth

processe3 become very time-comsuming even for a small number

of input variables.

The process of finding the prime implicants for a

truth-table was initially programmed as the Quine-McCluskey

algorithm. The inefficiencies in this algorithm were

apparent, and the more efficient Tison algorithm 1331 was

substituted. The Tison algorithm served well until results

for binary multiplication for two numbers of more than four

bits each were needed. Beyond this point the computer

execution time and the memory required became prohibitive.

A search was conducted for a "state-of-the-art" algorithm

Y- 71,
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3ind a tree structured approach by Morreale 1341 was adopted.

This algorithm eliminates much of the redundancy inherent in

the other algorithms and substantially reduces execution

time and memory required. In the course of programming this

algorithm, it was determined that time and memory could be --

further conserved for the problems at hand by modifying the

algorithm. The algorithm, as presented by Morreale,

operates on the input bit patterns of the unity-result

truth-table. Because the unity result patterns are a subset

of all possible input patterns, each comparison step in the

algorithm required a search of the 3tored patterns to

( determine if the desired pattern was present. It is more

direct to operate instead on a vector containing the state

of the output bit for all input combinations arranged in

numerical order. The search step in the original algorithm

then becomes a simple indexing into the vector.

Furthermore, while the original algorithm must store only a

subset of all possible entries, each entry that is stored

includes N bit positions. The algorithm as modified stores

an entry tor every possible input combination, but each

entry is only one bit position. Therefore, if the ratio of

unity-result entries to total truth-table entries is greater

than 1/N, which is most often the case, then the modified

algorithm also requires less memory. The modified algorithm

was programmed and proved to be very satisfactory for all

°°,.. ......°o ,o .-. , ............ . ... ... ,...,..



32

cases considered.

The problem of finding a minimal prime iuplicant

covering of the table of choice proved to be less yielding

to efforts to streamline its implementation. Originally, an

algorithm that produced substantial reduction of the table

of choice, but did not guarantee a minimal result, was used.

However, to produce authoritative results, such a guarantee

was required. The tabular method using recursive branch and

bound for cyclic tables presented by Muroga (331 was

adopted. A large effort went into optimizing this L

algorithm's use of computer time and memory and into

searching for a more efficient algorithm to replace it.

Eventually, however, the algorithm itself proved to be the

limiting factor in the size of reduction problems that could

be solved exactly.

All truth-table reduction programming mentioned so

far was done .n APL on the CDC Cyber system. APL, with its

powerful intrinsic array handling operations, is a natural

and common choice for problems of this type. Further, APL

can pack logical variahles as single bits in the physical

computer memory. However, system support for APL is

limited; very few individuals are available to offer advice

on programming problems, and external routines such as

virtual memory are unavailable. Thus, when APL programs

could not deal with the size of the reduction problems

attempted, the programs were rewritten in Fortran IV.

.~~~~' .. | .. .



Special subroutines were written to allow Fortran to pack

logical variables one per memory bit. This considerably

relieved memory size problems, but execution time continued

to be quite long. For example, calculation of the size of

the truth-table for the fifth most significant bit of the

multiplication result of two six bit binary words required

33.7 thousand seconds of execution time on the Cyber

computer.

1kNinmhg Systems~

The ability of truth-table look-up processing to

implement any digital fureftion provides flexibility in

choosing how particular numerical operations are to be

accomplished. In particular, the number system

representation to be used may be a system design parameter.

Within the framework of binary logic, there are many ways to

represent a number. The most common way for processing

applications is the base two fixed radix system, usually

called the binary number system (BNS). As a number system

with broad support and known computational properties, the

DNS is an obvious choice. However, it sets a number of

impediments in the path of high speed data processing.

Chief among these is a property it shares with all fixed

radix systems, the interdependence of digit results in

numerical operations, e.g. the need for carry propagation

in addition and multiplication. In electronic digital logic

I-
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implementations this requires that the most significant bits

of a result cannot be known until calculation of all less

significant bits has been completed. In truth-table look-up

processor operation it has another undesirable effect.

Recall that the size of the truth-table stored for an output

bit inckeases as the number of inputs affecting that output

increases. Because output bits in the binary number system

depend on all less significant input bits, the corresponding

truth-tables can be enormous. It would be desirable then,

if a number system representation with little or no

interdigit dependence could be used.

Residue number systems have just that property. The

u residue representation of a number consists of a group of

digits corresponding to the remainders left when the number

is divided in turn by each member of a chosen set of moduli.

The properties of residue number systems have been studied

I for many years [35,36,37J, but many aspects are still not

completely understood. Among the known facts are: 1) If the

chosen set of moduli are relatively prime (no two contain a

common factor), the range of numbers that can be uniquely

represented is equal to the product of the moduli. 2) The

operations of addition, subtraction, and multiplication on

residue numbers proceed independently, digit by digit.

3) So long as it can be guaranteed that the final result of

a multiple step calculation is within the valid

5-7 "
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representation range. overflow of that range for

intermediate results does not affect the final result. The

independence of residue digits provides substantial

reduction in the stored truth-table size. There are

drawbacks to the use of a residue representation. The

operation of division in a residue system requires

interdigit dependence. Also, the conversion between a

residue representation and more common representations is

not easily accomplished. Nevertheless, it is a worthy

candidate for comparison with the binary number system. In

a residue representation a digit determined by a modulus M i -

may take on any value from 0 to M-1. To make the residue

number system compatible to use with binary logic, a Binary

Coded Residue (BCR) representation was introduced. That Is,

the BNS repre&.ntation of individual residue digits is used.

Therefore dependence does exist between bit positions within

each individual residue digit. But a typical residue digit

might require only four bits to represent it, whereas the

entire result could require thirty-two or more bits. So

interdigit dependence is kept quite localized. A brief

review of residue arithmetic is given in Figure 9.

hzu1ta QL Truth-TAbit R eton Computer study

A comparative study of the amount of required '-

truth-table information was made for eight catagories

representing all possible combinations of three parameters:

.... 2.. .
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Standard Binway Residue binewy Coded Residue

visit Weight 108421 532 101 it 10

Reptentation 0-31 0-29 0-29

aRepreentaton 11011 201 010 00 1
of Decil 27

19 10011 411 1000ol1
'301000 320 01l1100

27 11011 201 010 0011

9 01001 401 100 001
al00011 302 011 001

27 1101 201010 001

Site of 322-1024 52,32,22.38 52-322438
Multiplication
Table

FIGURE 9. BINARY NUMBER SYSTEM VS. BINARY CODED RESIDUE NUMBER SYSTEM.
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representation, BNS or BCR; numeric operation, addition or

multiplicationi andcompaction, unity-result truth-table or

minimal prime implicant covering. The results are presented

graphically in Figure 10, detailed tabulated results are

available in Appendix 1. In Figure 10 the number of

truth-table entries is pletted against the number of

variables in each input word. The total number of variables

is twice that number. It is apparent that, for all but the

shortest word lengths, use of the residue representation

produces a substantial reduction in the number of required

truth-table entries, Logical reduction of truth-tables

produces a significant improvement in all cases, but is most

effective for results in the BNS. Addition requires fewer

truth-table entries than multiplication for all cases except

unreduced binary. All curves grow at nearly an exponential

rate, but curves for the BCR have a much smaller slope than

curves for the BNS. Detailed analysis of issues related to

these truth-table reduction results can be found in ....

References 38 and 39.

~as n n 2L R viot u W= Pectical x 2t m besi

As noted in a previous section, the number of

truth-table entries to be recorded places different demands

on the Exclusive Or processor and the Nand processor. For

the Exclusive Or processor the number of truth-table entries

translates directly into the number of rows required in tne

Lo -79
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page composer. Of course, the rows need not be in a single

vertical column but may be folded into a more convenient

square format. Plans currently exist to produce page

composers with divensions of 512 by 512 elements [40). If,

for example, a digital operation with 16 input variables is

to be implemented, then 512x512/16 or over 16,000

truth-table entries could be accomodated. This would be

sufficient for most of the cases presented in Figure 10.

The effect of using such a large number of entries on the

system's ability to handle parallel data streams would be

another design consideration.

For Nand processing, truth-table entries translate

into numbers of holograms recorded at one spatial location

in the crystal. Previous work has demonstrated recording

525 holograms at one location 1301. If the practical limit

is assumed to be in the range of 500 to 1000, then

operations in the BCR system are possible for up to eight

bits of precision. This is somewhat less than for the

Exclusive Or processor, but there is much less of a

trade-off between the number of recorded truth-table entries

and the number of parallel data streams for the Nand

processor.

One final consideration is that these comparisons

apply to operations that can be accomplished in a single

pass through the optical system. If more precision is

desired, it is possible to complete a result by combining

4 . 5-70
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intermediate results of less precision. For instance, a 16

Ibit addition can be broken into two eight bit additions, or

a sixteen bit multiplication into four eight bit

multiplications and three additions.

L
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CHAPTER IV

EXPERIMENTAL. ARRANCPMEN

The equipment used to conduct the experiments may be

classified into three categories: the optical system, the

video system. and the computer system. Each of these will

be described in turn.

- Tha Otil~ BY.rL=

The Exclusive Orprocessing experiments and the Nandi

processing experiments had a large part of the arrangement

of o;tical components in coamon. Where arrangements for the

experiments differed, the differences will be specifically -

mentioned. Also, for both sets of experiments, the

arrangement of optical components evolved so a3 to produce

the best results possible. The arrangements -!eszribed below

are the initial basic Gonfigurations. Additions and

modifications that were made, and the reasons fr t.hem, will

be explained in Chapter V in the description of the

experiments. Figure 11 shows the optical configuration for

Exclusive Or processing experiments, and Figure 12 shows the

configuration for Nand processing experimentz.

All components of the optical system were mounted on ,

an air-suspension vibration-isolation table. A box to cover

trs
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*- enclosing all the optical elements, except the laser head,

:educed thi effect of air currents and thermal gradients on

the experiments. It did, however, contribute to the need to

have the phase and amplitude of the reference beam under

electrical control, as discussed below. The principal light

source used for the experiments was an argon. ion laser tuned

to operate at a freespace wavelength of 514.5 nanometers.

An intracavity temperature stabilized etalon was used to

insure spectral purity of the laser output. The width of

the beam at the laser output was about 2.0 mm. A crystal

polarization rotator was used to change the vertically

polarized laser output to horizontal polarization. This

polarization, combined with the horizonta! angular

displacement of the object and reference beams, and the

orientatica of the lithium niobate ca;stalline axis, is the

most efficirnt configuration for hologram recording. A 50%

beam splitter was used to separate the object and reference

beams. Electronically controlled shutters were located at

the output of the laser and in the object and reference

beams. Precise timers in the shutter controllers were used

to regulate the exposure time for recording holograms.

The reference beam passed through a compensated

variable attenuator and then to electrically controllable

amplitude and phase modulators. The amplitude modulator

was assembled from a pair of Glan-Thompson crystal

sr..,.CoA AL|
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polarizers on either side of an electrooptic. KD*P

polarization rotator. The first polarizer was used to

improve the lO0t polarization ratio of the laser output

light. The voltage to drive the polarization rotator was

provided by a high-voltage power supply that could be

controlled manually or by computer. Computer control was

especially desirable, since the program could automatically

account for the sinusoidal dependence of modulation on

voltage. Because the voltage range of the power supply was

not sufficient to produce a full 90 degree rotation of the

light polarization, the second polarizer was mount d b' that

its axis could be rotated. Thus by inserting a quarter- or

half-wave plate it was possible to control electrically the

modulator about its transmission null, peak, or half

intensity point. The single element phase modulator was a

KD*P crystal. Another computer controlled power supply

provided sufficient voltage to drive this modulator over a

full 180 degree range. From the phase modulator the

reference beam proceeded to the position of the lithium

niobate crystal.

The diameter of the object beam was expanded by a

focusing lens followed by a collimating lens. Their focal

lengths were 12.8 mm and 380 mm respectively, giving a beam

expansion ratio of 29.7, and an output beam diameter of

59.4 mm. At the focal point of this beam expansion system a

spatial filter with a 15 aicron aperture was used to

-. * n -'
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eliminate unwanted transverse modes. The expanded object

beam passed through a data mask, which will be described in

detail below. A Fourier transform lens was placed at its

focal length, 380 mm, beyond the data mask. Another focal

length beyond the lens was the position of tne lithium

niobate crystal.

For the Exclusive Or processing experiments the angle

between the object and reference beams was fixed at 30

degrees. However, for the Nand processing experiments a

L.
series of angularly displaced reference beam positions were

used. This was accomplished by interposing two mirrors in

the reference beam path between the phase shifter and the

lithium niobate crystal.

The lithium niobate crystal used for the experiments

was a right parallelepiped measuring 10 mm by 10 mm by

2.0 mm. The square faces were polished to optical flatness.

The crystal was Y-cut and thus the C axis is parallel to the

polished faces. The crystal was mounted with the C axis

horizontal and directed to the right when viewed along the

direction of propagation of the beams. The C axis faces

were left open-circuited. The crystal was held in a stepper

motor driven mount that could be translated parallel to the

C axis of the crystal and rotated about the vertical axis.

Both degrees of freedom were used in the experiments to

multipl-Ix spatially and angularly many holographic

LP- •
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recordings into one crystal.

To maintain aperture size and position uniformity,

all data masks used for the Exclusive Or experiments were

based on a chrome master mask. This chrome master was a

glass plate with a 32 by 32 array of 100 micron diameter

p circular chrome dots on 400 micron centers. The masks used

for the experiments were glass plates with a high resolution

photographic emulsion on one side that underwent a two-step

contact exposure process. The first step was a contact

exposure with the chrome master. If the plate was developed

immediately after this step the result would be a 32 by 32

array of transparent apertures on an opaque background.

Instead, however, a second contact exposure was done with a

film mask, photoreduced from a hand-drafted pattern. The

film mask shielded selected apertures from the second

exposure; these apertures would remain transparent upon

*- development of the plate. Approximately half the apertures

in the masks used-for Exclusive Or processing experiments

were transparent; these were selected on a random basis

using a computer generated pattern. Photographs of the

actual mask patterns used for the Exclusive Or processing

experiments are shown in Figure 13. Only a few apertures

near the center of the array were left transparent on the

masks for the Nand processing experiments. These were

selected on the basis of representative reference patterns.

Because lightwave phase was important in both forms of

.... ,
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FIGURE 13. PHOTOGRAPHS OF DATA MASKS USED FOR "EXCLUSIVE OR"
PROCESSING.
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processing, a liquid gate was used to compensate for

differences between the masks used. This would not be a

problem in an actual system where a single, electronically

alterable, mask is used.

Beyond the position of the lithium niobate crystal,

the experimental configurations for the two forms of

processing differed. For Exclusive Or processing the output

data occurs along the path of the object beam; for Nand

processing it occurs along the path of the reference beam.

For the Exclusive Or processing experiments, a second

Fourier transform lens, identical to the first, was

positioned one focal length beyond the lithium niobate

crystal, along the object beam path. A vidicon camera tube

was placed with its photocathode face one focal length

beyond the lens. This allowed direct observation of the

processor output with the video system.

The arrangement for the Hand processing experiments

was more complicated. There were three design objectives

for that part of the optical system following the crystal

position in the Hand experiments. One was to be able to

view the reference beam on the video system without

realigning components when the beam changed angular

positions. This was important since output data bits occur

at the reference beam positions. It was desirable to see

all bits simultaneously. A corollary to this was that the

................................................. ...... ........... ......... ....... ............
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image of the reference beam should bit sized so that adjacent

positions did not overlap. A second objective was that it

should be possible to view the object beam mask with the

video camera so that different masks could be placed in the

object beam and aligned with previous masks by using the

video system. The final objective was that the object and

reference wavefronts be visible simultaneously on the video

system for the purpose of using the resulting interference

fringes to monitor the phase of the beams during hologram

recording. This meant the beams had to be brought together

at a very small angle so that the fringes would be larger

than the minimum resolution limit of the camera.

S(. All three objectives were met by the arrangement

shown in Figure 12. The object beam path differed little

from that used for the Exclusive Or experiments. A second

Fourier transform lens was used, followed by a lens to relay

the image to the camera. The simultaneous requirements of

controlling reference beam spot size and spot separation

made design of the reference beam path quite a challenging

problem. The fact that all angularly separated reference

beam paths passed through the same point in the crystal, yet

the reference beam itself was collimated, meant that

regardless of the lens used, the reference beam would focus

before the paths reconvergid. The solution was to use one

lens to bring the reference beam to a focus at different

points in a plane for different paths, then use a second

5-qi
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lens to produce a demagnified image of that plane. This

image was slightly defocussed to give the reference beam

spots an appropriate diameter at the camera plane. The

object and reference beams were combined with a beam

splitter. By aligning so that the reference spot coincided

- with one of the object beam spots at the beam splitter and

at the camera, the fringes produced were sufficiently large

to be conveniently monitored. The reference beam wavefront

was spherical and the object beam wavefront was plane, so

the fringes produced were circular; but this did not produce L

any difficulty.

Figure 14 is a photograph portraying the optical

equipment used. The arrangement pictured is essentially the

one used for the Nand processing experiments. Items may be

located by referring to the schematic in Figure 12. Shown

are the argon laser and its power supply, the liquid gate, %7

and the crystal mount. In the center foreground is a

scanning spectrum analyser, not used for the principal

experiments, but for precise measurement of the frequency

stability of the laser.

ha Video l

The video system was the primary tool for taking data

in all the processing experiments. A block diagram of the

video system is given in Figure 15. Synchronization sign,ls

for the entire video system were generated by a crystal

° ... ..

. . . . . . . . . .. . . . . . . . . . . . . . . . .



52

FIUR 14IHTGAHO PICLEUP TUE O
EXEIMNS

51-93



53

Wool
MAIN mate-w"o-aWV46 IT mombobvLaves am"Vem

V'Sa1NOW. "Ge"o-ol

PWp 04 :LI 61 -0044
Ll TWO

.20 TV "a

w"i

-IL-4 W
afta.V64. AL6, It,% ,&

*L#Cla* a
so." 640 K..

Too I , . .
:041, - - - -- ------

too so-80--feew 

I

oww,

4,0 1
a]

I Zf
66.40.166 WX

I oli

to

-------------

FIGURE 15. DATA ACOUISITION AND MODULATOR CONTROL SYSTEM.



54

controlled oscillator. The line rate used was 875
horizontal scans per video frame. video frames consisted of I
two interlaced video fields; each field being completed in

one sixtieth of a second. The length of the vertical

blanking period between fields varied with time, but the

number of visible scans stayed between 810 and 820. The

Sierra Scientific video camera had rack-mounted electronics

and a remote head containing the vidicon tube. An antimony

trisulfate (Sb2S3 ) photocathode was used. The camera

electronics provided for control of all the voltages applied

to the vidicon tube electrodes; the performance ot the

camera could be tailored to a variety of different operating

conditions.

The video output of the camera was connected to a

Colorado Video model 321 video analyser unit. This device

produces a DC voltage output proportional to the brightness

of any selected location on the video image. The video

analyser also superimposes horizontal and vertical cursor

lines on the displayed image to indicate the location of the

• .sampled point. The unit was designed to allow the sampled

point to be selected by manual front panel adjustments, but

modifications were made to put this selection under computer

control. Control was effected by substituting voltages

produced by digital to analcg converters (D%C) in the

computer system for front panel potentiometers. Another

a.Z



output of the video analy3er is also of Interest. During

every vertical video scan each horizontal raster line is

sampled at the position of the vertical cursor line, The

video analyser provides an output voltage signal

proportional to the brightness at the sampled points; this

signal changes at the horizontal scan rate. Thus, the

signal represente a vert'cal cross-section of the image

bright.-ess. The data rate of this signal w~s well matched

to the sampling rate of the analog to digital conversion

(ADC) system of the compIter. Therefore, this signal was

used as the source for all video digitizing and storage

4operations.

The video image was oisplayed on 3 Conrac monitor.

Also, a high-resolution Tektronix electrostatic monitor was

available. A photographic camera could be attached to it to

produce a permanent record of images.

A video control unit, designed and built in the

Optics Lab, was employed to direct and distribute video

signals to the selected locations in the video system. A

further function of this controller was to monitor the

amplitude of the video signal. If any point within the

image exceeded a preset intensity level, the controller

would cause an electrically-controlled shutter in front of

the video zarrera to close. This was to guard against

accidental bu:ns on the camera tube.

The Colorado Video model 275 digital video image

... . . . . . . . . . . . . .
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memory was also used. A custom board interfacing it to the I
computer was designed and built. Then data digitized and

stored by the computer could be redisplayed at a later time

for viewing and analysis. One other piece of electronic

equipment used was the Princeton Applied Research model 186A

synchro-het lock-in amplifier. Its use for phase

stabilization will be explained in Chapter V.

Figure 16 is a photograph of the electronic equipment

used for the experiments. The equipment rack on the right

contains the video equipment, in the center rack are high

voltage power supplies and the lock-in amplifier, in the

left hand rack is the MicroNova computer system. Visible

further to the left are the terminal for the MicroNova

system, a printer, and a terminal for communication with the

Eclipse S250 AOS system. Not pictured are the electronic

shutter controllers and the stepper motor drive for

positioning the crystal mount.

rhe computer system used for experiment control and

data acquisition will be described in two aspects, the

hardware and the software.

The hardware comprising the Optics Lab MicroNova

computer system is diagrammed in Figure 17. Use of the

computer for experiment control and data acquisition

required coordinated operation of many input/output
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facilities. A digital to analog converter board pros ded

voltages to control the position of the video analser

cursors. An analog to digital converter board was used to

receive data signals froi %he video analyser. A cu..tom

designed board combining digital to analog conversion with

digital input and output ports was used to control high

voltage power supplies used to modulate the amplitude and

phase of the reference beam. Another custom board was used

to interface the computer to the digital video image memory

unit. Video data taken from experiments was stored

temporarily on the hard disk unit. A permanent record of

all data taken was made on magnetic tape. Data was

transferred to the Eclipse S250 AOS system for analysis with

a 9600 baud serial communications link.

To manage software development in the Optics Lab, a

programming environment was established within the Disk

Operating System (DOS) framework of the MicroNova computer.

The environment consisted of a number of macro .omzmand files

designed to accomplish frequently needed tasks. A number of

student assistants worked on software for interface with the

experiment, and the programming environment was useful for

introducing them to the computer system, and for encouraging

proper documentation procedures. Software developed in the

Optics Lab falls into the following categories:

1) VIDEO, DATAKE: programs to control the video

. . . . ."
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analyser unit for the purpose of digitizing and storing

experimental results. These programs allowed the user to

select and display the subsections of the video picture to

be digitized. The number of scans over which the video data

was to be integrated and the spacing between sample points

could be specified. The programs automatically included in

each data file documenting information such as time and date

of acquisition, and position and extent of the data on the

screen. Also, quantitative calibration of the video

analyser signal was facilitated by this program.

2) VIDMEM: a program to control the digital video

image memory for the purpose of redisplaying previously

digitized video data. The user interface for this program -

was designed to resemble closely that for the video analyser

program.

3) OPAMPPS, PPSAM: programs to control high voltage

power supplies for the purpose of operating electrooptic

phase and amplitude modulators. The programs were designed

to take into account modulator half-wave voltages, laser

light wavelength, experimental configuration being used, and

the sinusoidal dependence of light amplitude on applied

voltage.

4) SEND, RECEIVE: programs to transmit and receive ..

data and other files over the serial communications link to

the Eclipse S250.

. .0.
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CHAPTER V

FEASIBILITY EXPERIMENTS

Experiments were conducted to investigate the

practical operation of Exclusive Or and Nand processing

systems. The experiments demonstrated the principles of

both forms of processing, and identified factors that affect

the probability of error for processing operations. On the

basis of statistical data taken in the Exclusive Or

processing experiments, a value for the probability of error

for the processing system has been calculated. The

procedures used for the experiments, and the results

obtained are Fresented in this chapter.

£zptrfmantal investigation 2L Exclusive Q Zrcessnaing

flemontration QL £z lunive Q. Optical. 2x.ouasing

To demonstrate Exclusive Or optical processing, the

following procedu a was used. A data mask was

holographically recorded in the crystal. Then the data mask

was changed to represent a different set of inputs. The

direct image of this data mask was superimposed with the

image of the original data mask reconstructed by the

reference beam. The phase and amplitude of the reference

beam were adjusted to give the best visual result.

Data page holograms were typ.caly recorded with

-. "* °02-



62

20 pW of power in the object beam, one m of power in the

reference beam, and with an expcsure duration of ten

I seconds. This procedure yielded holograms with a power

-3
diffraction efficiency of 5xlO-3. Visually, the data page

holograms exhibited high contrast, low noise, and good

resolution. Profiles taken through the reconstructed image

of the apertures revealed, however, approximately Gaussian

shapes rather than the expected flat top and square sides.

Initially, a direct image of the data mask onto the

vidicon tube. produced uneven brightness in the apertures.

Interference fringes resulting from the nearly parallel

front and back surfaces of the optical window on the vidicon

* ( tube were responsible. These fringes were eliminated by

i .. introducing an imaging lens between the second Fourier

1. transform lens and the camera, as shown in Figure 18. In .

this way, wavefronts reaching the camera were spherical .

Irather than plane, and produced fringes with a period

smaller than the resolution limit of the video camera.

After recording the first few holograms, subsequent

recordings became less efficient and of poorer visual

quality, though recording parameters were the same. The

degradation of recording quality can be attributed to the

build-up of large scale electric fields in the crystal.

These fields result from the accumulation of electric charge

at the boundary between the illuminated and the
• ~unilluminated portions of the crystal. The electric fields "-.

. o.-. ° *
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were relaxed, and all holograms in the crystal erased, by

exposing the crystal to a source of intense incoherent

light. A mercury arc lamp was used to expose the crystal

for a period of one hour.* The previous holograms were

completely erased, and new holograms that produced accurate

reconstructions could be recorded again in the crystal.

However, in the course of subsequent experiments, charge

build-up in the crystal recurred. When a second erasure of

the crystal became necessary, the use of intense

illumination did not renew the crystal as completely as the

first erasure. Previously recorded holograms were

eliminated, but the entire crystal was left with a fine

pattern of refractive index inhomogeneities, commonly known

as a "shower-glass" pattern. These index of refraction

inhomogeneities scattered light, making it impossible to

record acceptable holograms. A second method known to be

useful for erasing refractive index modulations in lithium

niobate crystals was then employed. The crystal was heated

to 190 degrees Celsius, in an oxygen atmosphere, for a

period of one hour. Then, the crystal was allowed to cool

overnight. This treatment, however, only exaggerated the

shower-glass effect. Another crystal, GT-13, with the same

dimensions and doping as the first crystal, had to be used.

Eventually crystal GT-13 was in need of erasure too. The

same shower-glass pattern was induced in it by the erasure

1.k
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procedure. A third crystal, GT-16, also sharing the same

dimensions and doping, was used for the remaining Exclusive

Or experiments. These included all experiments in which

probability of error data were taken.

The first attempt to superimpose wavefronts from the

object and diffracted reference beam revealed that the

reconstructed image of the mask was displaced horizontally,

about one quarter of an aperture diameter, from the position

of the direct image. The displacement occurred though

nothing had been moved on the optical bench from the time

the hologram was recorded. Elimination of this displacement

was actively sought through realignment of the optical

components, but the cause was never found. The magnitude

and direction of the displacement was reproducible over a

period of days, but did vary slightly over the course of

several weeks. To correct for the displacement, the data

mask was horizontajly translated until its image was brought

into alignment with the reconstructed image. The correction

worked well in a practical sense for all of the experiments, . .

but was inconvenient and lacked a sense of precision.

With the direct and reconstructed data mask images

aligned, and proper adjustment of the voltage applied to the

electrooptic phase modulator, destructive interference of

the object and reference beam wavefronts ?roduced the

Exclusive Or result at all visible aperturci locations.

Since the pattern of input data was the same as :he pattern

. . . .. . . .-. .
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recorded in the crystal, all bit locations were dark.

Despite the air oanspension of the optical bench, however,

the result exhibited some small sensitivity to mechanical

vibrations produced in the building. Also, it was necessary

to cover the experiment to shield it from air currents.

The Exclusive Or operation was produced using as

input data the mask used for recording the hologram shifted

horizontally by one column. With proper adjustment of the

optical system, the result exhibited the expected Exclusive

Or of the dissimilar data patterns. Next, a mask other than

the one used for recording the hologram was used. To verify

that a liquid gate arrangement would be required for the

masks, the alternate mask was .oositioned in the object beam -

without the liquid gate. Adjustment of the reference beam

phase was able to produce Exclusive Or nulls within

localized regions of the resulting image, but not

simultaneously at all positions where nulls were expected to

occur. Phase variations resulting from small differences in

thicknesses of the glass plates supporting the masks'

photographic emulsions prevented uniform phase interference

over all apertures. The effect was not noticable when ust.ng

the recorded mask displaced by one column as the input data

mask; evidently thickness variations over any one mask are

very gradual. The liquid gate provides a chamber that

contains a fluid with an index of refraction matching that

5/07
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0I

of the glass substrate of the data mask plates. When data

masks are immersed in the Mid, phase distortio.s of the

object beam vavefronts due to tnickness variations in the

mask plates are eliminated. )istortions occuring at the

interfaces between the liquid citLe's outer windows and th-

surrounling air are fixed in amplitude and position,

indepedent of the mask contained within the liquid gate.

Such fixed distortions are not detrimental to Exclusive Or

processor operation. The entire issue of data mask phase

inhorogeneities is artificial to any practical working

implementation of a processor; practical processors would L

have a single data mask device capable of altering the

transmissivity of its individual cells. As long as each

cell exhibited a consistent phase delay whenever the cell

was transparent, phase distortion of the beam would not

influence processor operation. With the use of the liquid V
gate, Exclusive Or nulls were obtained over all visible

apertures regardless of the relation of the mask used as

data input to the mask used to record the hologram.

Detailed examination of the Exclusive Or nulls

obtained from destructive interference of wavefronts from: '\ ,
the imaged and reconctructed beams revealed that they had a

A- /\ nonuniform intensity profile. Each had a small bright point

at the center of the bit position, surrounded by a dark

ring, surrounded by a dimly illuminated ring, surrounded by

the uniform darkness of the background. A photograph of

. . .. S * * * *5 "- *0*- . . . ..
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data displaying this pattern is shown in Figure 19. The

pattern Is not associated with the bright spots Ln the

figure, but with -he dim optical bit locations. The

derivation presented in Figure 20 gives an understanding of

* the cause of this pattern. The envelope of the Fourier

Transform of the mask is found to be an Airy function, the

first zero-crossing occurs at a radius of 2.4 mm. This is

considerably larger than the half-width half-power radius of

the reference beam, measured as 1.0 mm. Therefore, thE'high

spatial frequency components of the Fourier transform were

not being recorded in the hologram. The attenuation of high

spatial frequenicy components results in a reconstructed

1 image of apertures that are leis sharply peaked and broader

than apertures in the direct image of data mask. Figure 21

.: shows how destructive interference of the dissimilar mask

images leads directly to the observed characteristic

( intensity profile.

The dissinilarity of the spatial frequency content of

the images is corrected by placing an aperture directly

behind the crystal. High spatial frequencies are removed

from the direct image of the mask to the same extent those

frequencies are missing from the reconstructed image. The

correction is not exact since thd amplitude of the Fourier

transform of the recorded data pattern is still dittorted,

within the limiting aperture, by the Gaussian profile ef the

". I.., %I
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FIGURE 19. PHOTOGRAPH4 SHOWING DOT AND RING PATTERN
CHARACTERISTIC OF "EXCLUSIVE 0R 'RESULT
PRODUCED USING AN UNEXPANDED REFERENCE
BEAM. VERTICAL WHITE LINES ARE CURSORS
SUPERIMPOSED BY THE VIDEO ANALYSER.
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AMPLITUDE PROFILE
OF DIRECT IMAGE OF
APERTURE.

AMPLITUDE PROFILE
OF BROADENED
RECONSTRUCTION
OF APERTURE DUE
TO LOSS OF HIGH
SPATIAL FREQUENCIE .L

DIFFERENCE BETWEEN 'I ",
AMPLITUDE PROFILES.

CHARACTERISTIC PEAK AND
RING INTENSITY PROFILE
RESULTING FROM SQUARE
OF DIFFERENCE BETWEEN
NARROW AND BROADENED
APERTURES.

FIGURE 21. EXPLANATION OF PATTERN RESULTING FROM "EXCLUSIVE OR"
WHEN SPATIAL FREQUENCY CONTENT OF RECONSTRUCTED
APERTURE IS LIMITED BY SMALL REFERENCE BEAM DIAMETER
AT THE CRYSTAL.
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reference beam. However, noticable improvement in the

uniformity of the profile of the nulls was produced by using

an aperture with a diameter of 2.0 rn.

Use of the limiting aperture was found to have some

undesirable effects as well. First, the match between

profiles of imaged and reconstructed apertures improves L

monotonically with decreasing aperture size. This is

because smaller and smaller (and therefore flatter and

flatter) portions of the center of the reference beam are

allowed to pass. Thus, a trade-off is introduced between L

uniformity of the nulls and total optical power available at J

the detector plane. Second, it was physically impractical

to place the aperture flush against the back surface of the

crystal. The closest practical placement was about 10 m.

behind the crystal. This meant the aperture was not purely

a spatial frequency filter. The observed result was that

apertures near the edge of the field of view were dimmer

than those in the center.

In view of these difficulties, a second method of

matching the profiles of the imaged and reconstructed

apertures was employed instead. By expanding the reference

beam, high spatial frequencies were included in the recorded

Fourier transform. Resolution of the reconstructed

apertures was improved to nearly equal that of the imaged

apertures. The reference beam was expanded by using two

lenses, as shown in Figure 22. The focal lengths of the

/ 
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lenses used were 23 -m and 78 mm, giving a beam expansion

ratio of about three. Not only did the expanded beam

overlap essentially all of the Fourier transform of the data

mask at the crystal, but the beam extended beyond the edges

of the crystal. The problem of charge build-up in the

crystal was therefore greatly reduced. The aperture at the

crystal plane was no longer used.

Figures 23, 24, and 25 present experimental Exclusive

Or processing results that were obtained. These results

were obtained by photographing video images on the

Tektronics video monitor; the video system is depicted in

Figure 15. Reproduction techniques unavoidably have

increased the contrast of the photographs; the apparent

variation in apertur: diameter is in part due to variations

in recorded intensity instead. The results presented

include use of the liquid gate and the expanded reference

beam. The data masks referred to as A and B in the figures

are subsections taken from near the center of a larger 32 by

32 aperture mask. Magnification for the image presented to

the video camera was chosen as a compromise between viewing

a large number of apertures and being able to see the

details within individual apertures. For the case presented

in Figure 23, mask A, representing the input data, is just a

horizontally displaced version of mask B, the mask used to

record the reference pattern hologram. However, comparable

...... .- ..; ..~~~~~~~....................... ...................................-... ,... -.... '•................ ...... ° . . . . . "..,
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A
(Object Beam)

* (Diffracted Beam)

fb)

AeB
(Processed Data)

Id)
FIGURE 23. PHOTOGRAPHS OF RESULTS FOR "EXCLUSIVE OR" PROCESSING

EXPERIMENTS. (a) IMAGE OF INPUT DATA MASK. Ibl HOLOGRAPHIC
RECONSTRUCTION OF RECORDED DATA. (C) EXCLUSIVE OR"
RESULT.
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~j i. (Processed Data)

AOB
-10% B Amplituden((Processed Data)

A

+10% B Amplitude
(Processed Data)

44I

4 FIGURE 24. DATA PROCESSING EXPERIMENTAL RESULTS. (at "INCLUSIVE OR"
b OF DATA PAGES SHOWN IN FIGURE 23. 1b) "EXCLUSIVE OR" WITH

REFERENCE BEAM POWER DECREASEO 10%. Idl -EXCLUSIVE OR"
RESULTS WITH REFERENCE SEAM POWER INCREASED 10%.
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B
(Ojercte Beam)

(b)

B 4

(Processed Data)

(di

S FIGURE 2S. "EXCLUSIVE OR** RESULT OF A DATA PAGE WITH ITSELF.
UPl IMAGE OF DATA. (*b) RECONSTRUCTION OF RECORDED
DATA. (c) -EXCLUSIVE OR" RESULT.
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results were obtained without this coincidental

correspondence between masks.

Figure 23a shows the direct image of the data mask A

taken through the crystal. At the time the photograph was

taken, seven holograms had been recorded at that same

location in the crystal. Distortions apparent in the shape

of the mask apertures are a result of the index of

refraction variations induced in the crystal by the recorded

holograms. Figure 23b shows the image reconstructed from a

hologram of data mask B. Figure 23c presents the Exclusive

Or result obtained with both images presented together at

the video camera. The relative phase and amplitude of the

beams were adjusted to give the best visual Exclusive Or

result. The result is exact in that Figure 23c does

represent the bit by bit Exclusive Or of data in Figures 23a

and 23b. It is apparent that some optical bits in the

result are brighter than others. Also, apparent on the
I

original photograph, though not on this figure, there is

optical power present at the locations of logical zero bits;

particularly those that result from the Exclusive Or of two

ones in the input data arrays. The probability distribution

of the power incident at output locations in the result is

the basis for calculation of a projected probability of

error. This calculation is the subject of the statistical

experiments presented in the next section of this thesis.

The result of Inclusive Or between masks A and B is shown in

Sr ." °°
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Figure 24a. Recall from Chapter II that the Inclusive Or

result Is produced by adjusting the optical system so that

vavefronts from the direct image and from the reconstructed

image are In phase at the detector plane. It is evident in

the figure that binary ones in the result produced by the

Inclusive Or of ones in both input masks are much brighter

than ones present in a single input mask. However, by

properly placing a detection threshold, tUe proper Inclusive

Or result would be obtained. Figures 24b and 24c return to

Exclusive Or processing to examine the effect of a 10%

increase and decrease, respectively, in the power of the

reference beam used to reconstruct the hologram of data mask

B. The Exclusive Or result remains essentially correct,

though in both cases increased power in a bit near the lower

right hand corner becomes apparent. But, with proper

setting of the detection threshold, correctness of the

result could be preserved. Figure 25 presents the result of

Exclusive Or of data mask B with itself. The expected

result of all binary zero output bits does occur. The

figure demonstrates that even complete cancellation of data

page wavefronts does not give rise to a diffuse background

of scattered light at the detector.

Phase Etabiltiatin
In preparation for the statistical experiments, the

long term behavior of the stability of the phase

. .
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relationship between the object and reference beams was

studied. The voltage applied to the phase modulator was

adjusted to produce the best Exclusive Or result, and then -. -

the change of the result over time was observed. There was

a monotonic relative phase shift between the beams that

produced cycling of the result from Exclusive Or to

Inclusive Or and then back again. The period of these

cycles was observed to vary from one and a half to five

minutes. The cause of these cycles was first sought in

thermal expansion of some optical apparatus, caused by

heating from the laser beam. A second possible explanation

was a dynamic recording effect taking place in the crystal.

. Both hypotheses were eliminated from consideration in the

following way: The relative phase of the beams was set to

produce a good Exclusive Or result, then the laser beam was

blocked as it exited from the laser. The Exclusive Or

result was observed at intervals of time afterwards by

briefly unblocking the beam. The rate of the phase drift

measured in this situation was unchanged from the rate

observed with a continous beam. This result focused

attention on the laser itself as the source of the phase

drift. There was a difference of about 70 mm between the

path lengths of the object and reference beams, from the

point where they separated at the beam splitter to their

intersection at the crystal. A change in optical frequency

-- of the laser would appear as a relative phase shift between

s.-4'
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the beams due to the path length difference. Careful

mesrement of the frequency stabiltity of the laser was

made using a scanning spectrum analyser. After an initial

warm-up period, th~e frequency of the laser did change at a

rate as great as 95 MHz/minute. This was translated Into

the equivalent phaseshift using the formula: L

2idAV (3)

A.,,•-

L

where:
64 Is the change In phase In radians,
d Is the path length difference of the two beams,
c Is the speed of light,
AV is the change In beam oscillation frequency.

The calculated phaseshift rate of 8.64 degrees/mmn was more

than an order of magnitude below the observed rate of 240

degrees/minute. Therefore, to confirm this finding, the

beam path lengths were adjusted to be as nearly equal as

possible. The observed phase shift continued at the same

\

rate. Then the beam path that initially had been the

shorter was made very much longer than the other beam path.

The phase shift was unchanged in direction or magnitude.

These observations eliminated laser frequency drift as a

possible source of the phase shift.

The only remaining passible cause was a general

thermal expansion and contraction of tha optics bench and

_..J 
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the optical components. The air conditioning system of the

building made it impossible to maintain a constant roo.-

temperature to within better than plus or minus three

degrees Celsius. Also, even if possible, such tight control

of the temperat're would not be desirable for future

experiments. However, some way of controlling the relative

phase of the beams was needed. The experimental apparatus

available to digitize video data was expected to take more

than 1.5 minutes to store an entire image. Obviously the

current -rate of phase change would produce results that L

represented no particular phase relationship.

:A phase stabilization feedback system was devised to

make consistent measurements possible. A block diagram of

the system is showa in Figure 26. The heart of the

stabilization system was a synchronous lock-in amplifier.

The reference oscillator in the lock-in amplifier provided a

10 Ez sinusoidal voltage signal. This signal was summed by

San op amp circuit as a dither signal to the DC voltage that

controlled the reference beam phase modulator. The combined

signal was amplified by a high-voltage op amp power supply

and applied to the phase modulator. It is the property, of

the Exclusive Or operation that when the phase of the

reference and object beams differ by exactly 180 degrees,

the total optical power incident on the detector plane will

be a minimum. A low pass filter at the input of the lock-in

. . . . . .
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amplifier was used to integrate spatially over the entire

Image of the Exclusive Or result because video frames are

repeated 30 times per second, any component of the video

signal occurring at 10 Hz must represent variations in the

spatially integrated brightness of the entire frame. This

is the reason 10 Dz was chosen as the reference oscillator

frequency. The synchronous amplifier portion of the lock-in

amplifier produces an output given by:

V(t) A -tv-(1) Cos(W r + er) exp[-B(t -), (4)

where:
V(t) is the output voltage of the lock-in amplifier,
V (t) is the input voltage of the lock-in amplifier,
w is the radian frequency of the reference oscillator,
A, B. 8 are adjustable constants.

r

That is, the output is the time average of the amplitude of

the component of the input signal that varies in phase with

the output of the reference oscillator. This provides a

.. very sensitive way of detecting a small signal in the

presence of noise. Figure 27a shows the variation of the

average video voltage signal produced by the sinusoidal

phase modulation when the &verage phase difference between

the object and reference beams is far from 180 degrees.

Synchronous* detection of the video signal would produce a

negative DC voltage at the output of the synt bronous

xi : .. ,a . .. . -.- ,.,- * . a:...... . .h. &. ..-... a S.
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amplifier. The time integral of this phase error .signal is

summed to the voltage controlling the phase modulator.

Figures 27b and 27c show how the detected power signal would

change as the phases of the reference and object beams

approached tha correct relationship. If the phase should

drift away from the optimal setting in the opposite

direction, a positive error signal voltage would result,

again returning the average phase to the optimal setting.

Figure 28 shows the circuit built to perform the time

integration of the phase error signal produced by the

lock-in amplifier and the weighted summation of the signals

controlling the phase modulator.

In operation, the amplitude cf the dither signal was

set to produce a 15 degree phase variation in the reference

beam. The effect of this on the Exclusive Or result was

barely discernable in the image displayed on the video

monitor screen. The'DC voltage was adjusted to give the

best visual Exclusive Or result. The feedback gain was

increased until oscillations in the feedback voltage were

observed, then the gain was set just below that point. The

phase stabilization system did prove capable of tracking and

correcting for the phase drift observed in the Exclusive Or

results. It was designed, however, to follow the long term

shifts and not the short high frequency disturbances that

can come from room vibrations and air currents. Therefore,
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under even the best conditions, brief excursions from a good

Exclusive Or result were still observed.

In order to show that Exclusive Or processing could

be performed repeatably, a series of experiments was

undertaken to measure data that would allow calculation of a

I ,

probability of error, also known as the bit error rate, for

the processing operation. All experiments that provided

statistical data for Exclusive Or processing proceeded in a

similar manner. First, a hologram of one of the two L

available data masks was recorded in the crystal. This

recording was done at the same position in the crystal for

(all experiments, but the crystal was rotated to a different

angle with respect to the beams for each recording.

Recording was done with 40 usW of optical power in the object

beam, and 4.0 mW of optical power in the reference beam.

The exposure time was 30 seconds.' When the recording of a

hologram was complete, the object beam mask was altered.

This was done either by translating, the mask used for

recording by one column, or by replacing it with the other

available mask. Then the reference beam was turned on and

the reconstructed image of the first mask was observed with

the video system. The power in the reference beam was

adjusted until the intensity at the center of the apertures,

as measured by the video analyser, was one fourth of the

maximum brightness to which the video system can respond.

6 .- -,..
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The position of the center of an aperture in the

reconstructed image was marked with the video analyser

cursors, The reference bean was turned off and the object

beam was turned on. The image of the data mask was aligned

with the reconstructed image of the first mask by using the

position marked with the video analyser cursors. Then the

power in the object beam was adjusted to produce the sane

brightness at the center of the apertures as was measured

for the reconstructed image. With both beams turned on, the

DC voltage applied to the reference beam phase modulator was

adjusted to give an Exclusive Or result that appeared to be

the best. The switch applying the dither voltage in the

phase stabilization system was then closed. The phase

stabilization system would lock in the proper phase

relationship between the object and reference beams. The

appearance of the Exclusive Or result was fine tuned by

adjusting the voltage applied to the reference beam

amplitude modulator. This fine tuning was to produce the

greatest observed ratio between the brightness of the ones

in the result due to the reference beam to the brightness of

the zeros due to destructive interference of both images.

when adjustments were completed# the command to digitize the

video signal was issued to the VIDEO computer program.

The raw data were 12 bit positive magnitude numbers

Each number represented the digitized value of the video
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signal voltage related to the intensity of light incident on

one position of the vidicon photocathode. The operating

principles of the video analyser dictated that sequential -

data points represent vertically adjacent positions, taken

from the top of the screen to the bottom. When one vertical

scan was completed, the horizontal position of the scan was

adjusted by the computer and the next scan was taken. The

video analyser was calibrated so that, in terms of distance

on the video photocathode, the separation of neighboring

sample points within a vertical scan was equal to the

separation between neighboring scans. A rectangular portion

of the video image was scanned. The scanned area was

sampled 272 times along the vertical dimension and 362 times

along the horizontal dimension. Depending on the

registration of the sampled area with the data mask image,

an array was sampled that included seven or eight rows and

nine or 10 columns of optical bit locations. The time

required to scan the entire rectangular area was

approximately one and one-half minutes. The monotonic drift

of the relative phase of the object and reference beams

during this period was compensated by the phase

stabilization system. Bowever, occasional brief excursions

from a good Exclusive Or result were observed, and data

representing these excursions was unavoidably recorded.

Although precautions were taken to isolate the experiment

from building vibrations arnd air currents, remnants of these

,. . ...... ..... ._ . ..... . ... _. ......* F .. . -F.
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disturbing influences are the suspected source of the

excorsions. The data were temporarily stored as disk files

on tL.e MicroNova compter system, then transferred over a

serial communication line to the Eclipse S250 AOS computer

system for analysis.

In a practical processing system, the vidicon

photocathode would be replaced by an array of

photodetectors, one detector at the position of each optical

output bit. Detectors based on one of a number of

principles would serve the purpose: charge-coupled devices,

charge-injection devices, photoconductive devices, or

photodiode devices. Any form of detector that is used,

however, will produce an output voltage, or equivalently an

output current, that is proportional to the two dimensional

spatial integral of the optical power incident on the

detector. The optical power falling on any element in the

detector array of the processing system will in principle

assume one of two values. Zero optical power would

correspond to a binary zero state; a fixed, nonzero, value

of optical power would correspond to a binary one state. In

reality, of course, the power falling on detector elements

assumes a distribution of values. Among the factors

contributing to randomization of the detected power values

are imperfections in the optical elements, disturbances in

the air through which the light travels, vibration of the

......................-......................................... .................. .... .-.



optical components, and imperfect holographic recording and

reconstruction of vavefronts due to properties of the

crystal or properties of the recording beams. To obtain a

binary output from a distribution of power values, a

threshold value of powe: must be selected. Elements-

detecting a level of power exceeding the threshold are

considered to produce a binary output of one: elements

detecting a level of power less than the threshold produce a

binary zero. From the nature of the distribution of

detected power levels, some elements that should, on the

basis of the input data to the logic function, produce an

output of zero will, in fact, produce an output of one. The

probability of this type of error occuring is called the

probability of false alarm, P7, and is given by:

P )  J p (uO) du, 151

VT

where:
P Is the probability of false alarm,

Is the threshold value of power,
PT is the probability of a binary zero output,
p0(ujO) is the conditional probability density function of the

optical poer gven an output binary zero.

Conversely, some detectors that should produce an output of

one will produce an output of zero. The probability of this

type of error occurring is called the probability of miss,

Ni and is given bys

. .. .
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?(T )1Pl I T p1(ull) du, (6)

where..
P Is the probability of a miss,
ist the threshold value of the power,

? In the probability of a binary one output,

PJ(1)In the conditional probability density function of the
optical power Riven an output binary one.

The total probability that a detector will produce an output

that does, not correctly represent the result of the

Exclusive Or operation is:

-ZVT ?F(VT) + ?H(VT). (7)

where:
is t the total probability of error.

To calculate the total probability of error,P

implied by the video data taken in the Exclusive Or

processing experiments, probability density functions were

chosen that represent the distribution of detected powers,

and a threshold value of power was selected. Previous

analyses of detection of binary signals in the presence of

noise 142,421 have dealt with radio communication. A

similar treatment will be used for the case of detection of

binary optical signals. The situation for detection of

results of Exclusive Or optical processing is more complex,

however. There are four states the two binary inputs to an

......................................
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Exclusive Or operation can have. Reasonably then, four

probability density funcions will be necessary to describe

the distribution of detected powers. An important factor to

consider in the choice of distribution functions is the

electronic video noise that is combined with the measured

power values. The previous analyses for binary radio

communication have used a Rayleigh distribution to represent

the power detected when a binary zero is transmitted.

However, video noise was found to overwhelm completely any

detected power at detector locations corresponding to two

binary zero inputs to the Exclusive Or operation. Therefore

a Gaussian distribution function was chosen to represent

these locations:

-ouIOO) . 1 exp(-( U0) /2OO]. () .,-/.a
(2w)

where:
Po(u 0) is the conditional probability density function given

that both Input bits are zero,
i Is the standard deviation of the distribution,
is the mean of the distribution.

The situation for the other three distributions Is analogous

to reception of transmitted signal power in the presence of

noise and fading. In the case of the P11 distribution, the

detected power results from imperfect destructive

i. nterference of the imaged and diffracted wavefronts. For
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Ap

t .e P01  and P 0  distributions, the signal power is from

Ixclusive Or output bits with a value of binary one.

Therefore, the Rician distribution 1431 was used to model

PC1 , PlO, and P 1:

aJ
Po(~l)_ _.2 2 2 2

(uIll) u exp[-(u' + ull)/2al] Io(UU1 l/al1 ), . -all 
-

PlUil)2 2 2 2
2u-exp[-(U + u 1o 1 (uu1a9)

001

S----exp[-(u 2 + ulO)/2olO Io(uul 0 /olO),

810

where:

Po(UNll), P1 (ulOl), and p1 (ulO) are the conditional probability

density functions Eiven binary inputs 11, 01, and 10 respectively.

0Iis the modified Bessel fuwction of tke first kind and zero order.

To obtain the total power distributions associated with

detection of a binary one or a binary zero the four density

funtions will be summed in pairs appropriately:

Po(UIO) - Po(UIOO) + P((U10))'

* pl(uil) " pl(uIO 1) + pl(u llO).

340 I
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C The firststep in fitting the chosen distribution

functions to the measured data was to relate the video

signal voltage levels to incident power. Only relative

power levels are important, since scaling all measured

powers by the same factor does not affect the probability of

error. The relation of video signal voltage to incident

power is:

V 5 (v 11) .
Vv 0

where:
V is the video signal voltage.
I is the Incident optical intensity,
Is a characteristic of the photocathode.

The Sb2S3 vtdicon photocathode has a y of 0.65. Therefore,

a program was written to correct all measured voltage

samples according to the formula:

*(/Y (12)

vi

where:
V is the voltage corrected to represant the optical power.

This program also converted the 12-bit integer format of the

raw data into standard Data General floating point number

format.

.- ,."\-" .-
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Tb. next step was to model discrete detectors from

the array of video sample values. Square detector elements

were modeled as centered on the positiona of the optical -

output bits. The detectors could be modeled so that the

length of each detector element equaled the separation of

neighboring optical bit positions. Alternatively, the edge

length could be smaller, leaving 'dead apacem between

detector elements. optical power for each output bit in the

sampled results was observed to be confined to a region near

the central position for the bit. Therefore, the detectors

could be made small and still intercept all incident optical

power. A benefit of using small detector areas was

( improvement of the signal to noise ratio of the maasured

14,values. Electrical noise from the video equipment

constituted a substantial part of the sampled signal. By

using the minimum number of sample points in a detector

element, the contribution of naiv'e was decreased without

affecting contributions representing incident optical power.

Calculations of probability of error were done using a range

of modeled detector sizes. The detector size that most

frequently gave the lowest probability of error was eight

samples square. Using 34 samples as the measured center to

center spacing between optical bits, and recalling that the

diameter of input mask apertur~s is one fourth the center to

center spacing, the edge length of the detcctor giving the

lowest probability of error is calculated to be 1.06 times

- - - " - ' -. " - ' ' ' . . . . " - .- '. -. - - - - j • - .- . - - . - .- - - . . . . - - . - , - - - . , - .. - 7 p
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the diameter of the image of the mask aperture.

Geometric distorion in the raster scan pattern of

the video camera caused the optical output bit locations to

fall in an array that was not precisely orthogonal. With

the columns of optical bits aligned vertically, rows of bits

made an angle of 0.9 degrees with horizontal, rising to the

right. Using the VIDKEN program to control the digital

video memory connected to the Micronova computer system, the

vertical and horizontal location of the centers of the

optical bits at the four corners of the sampled array were

determined. These locations served as the input to the

progan running on the Eclipse S250 system that calculated

and corrected for the distortion. The calculated positions

of the detector locations were checked by superimpo.rg them

on te data displayed by the VIDMEM program.

Square detector areas of the selected edge length

were defined at positions centered on all optical bit

locations in t.e sampled array. All sample values falling

within each detector area were summed to give a composite

measurement of optical power incident on the detector.

Included in all sample values was a video pedestal level.

This is a DC vGltage level that varied with posAtion on the

vidicon photocathode and also changed slowly over time. To

remove the effect of this off3et from the data, a file

containing sampled values of the video signal with no light

.- -7
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* .: incident on the vidicon photocathode was always taken during

each experimental session. Sample values stored in this

file also were summed over the modeled detector areas. For

each detector, the sum from the background file data samples

was subtracted from the sum of the optical processing daLa A
* file~ samples to give a final measure of the optical power

. 'incident on each detector.

From records of the binary input data masks for the

Exclusive Or operation, detector powers were classified into

four groups, corresponding to the four different possible

states of the input bits. The number of values falling into

each classification were approximately equal. For each

class, the average power and the standard deviation were

calculated. For the P distribution, u00 in Equation 8
P00

was set equal to the calculated average for the

corresponding class, 000 was set equal to the stendard

deviation. For the other three distributions, u inXX
Equation 9 was set equal to the calculated mean, and oxx

was set equal to the standard deviation. Sample plots of

the probability distribution functions obtained this way are

given in Figure 29.

There are several criteria upon which to select a

threshold value of power. Since an output bit falls into

any of the four classes with equal probability, the

criterion that results in the lowest probability of error

states that the threshold is chosen at the value of power

I...-
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(

where p0 equals pi A program using the procedure of

interval bisection was written to find this threshold power

value. The total probability of error was then calculated

according to Equation 7. Values for the required integrals

of the Rician distribution have been tabulated 144).

However, it was more convenient to evaluate them

numerically. The numerical integration program produced

values for PM' PF' and P.

A total of 10 data files containing 584 optical bit

positions were used in the determination of the probability

of error measurement for the Exclusive Or processing system.

0 Including background level data files, a total of 1,378,496

sample values were collected and processed. Each data file

was processed for an average of four different detector

sizes.

As stated previously, some data were collected that

represented excursions from the nominal Exclusive Or result.

These are considered to be artifacts of the long period of

time required to collect the data in each Exclusive Or

result image. As such, they are not representative of the

true operating characteristics of the processing system, and

so were discarded. To avoid unduly biasing the data, the

following precaution was observed. Data for the output

positions in each column of optical bits are taken within

(.'the same span of time. Therefore, all positions in a

. -..
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column represent the same relative phase of the object and

reference beams* So, data were rejected or accepted on a

column by column basis.

Using the statistical procedure described above, the

values of Pm-1l4 91l0  , * and PE- 2 .40xlO were

*obtained for the Exclusive Or processing system. The

probability density distributions shown in Figure 29 are the

functions used to arrive at these values. These values are

quite high as compared to typical figures of lxl0 8

-' probability of error for electronic digital processing

systems. The values obtained may be taken as preliminary

ind .cations only. All technologies applied to digital

( processing in the past have shown steady improvement of

processing reliability as knowledge was gained about the

factors influencing the systems' probability of error.

There is no reason to believe Exclusive Or optical

processing will not also become more reliable as it is more

fully understood.

One important factor to consider in the determination

of the probability of error is the effect of video noise on

the distributions of measured powers. The uncertainty

contributed to the measurements by video noise was evaluated

in the following way. Two background data files taken on

the same day were used to provide data to the program for

integrating measured optical power over the modeled detector

"-" ." areas, One file served in the usual role for a background,.-.

. ,\ '.-,.
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data file while the other substituted for a data file

containing optical output bit power measurements. The

standard deviation for integrated detector powers produced

in this way was calculated. In general, this standard

deviation was approximately half of the standard deviation

observed in measurements of standard data files. If it is

assumed that the video noise is a random variable added to

the random distribution of detected optical powers, then the

probability density functions of the error measurements are

given by the convolution of the video noise probability

density functions with the true optical power probability

density functions. Further assuming that the behavior of

Rician distributions upon convolution is similar to the

behavior of Gaussian distributions, the previously measured

standard deviations represent the sum of the standard

deviations for the video noise distribution and the true

optical power distributions. Using new values for the

standard deviations of the probability function for tne four

classifications of Exclusive Or processing output bits, the

probability of error was recalculated. The values obtained

were: P m-8.03xl0"8, PF-4.72x0-4 , and PE 4 .7 2 xlo 4 . These
values show that video noise was an important influence in

determining the probability of error for Exclusive Or

processing.

The experiments demonstrating the principle of

6.-I•4
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Exclusive Or processing, and the experiments that provided

data for determination of the probability of error provided

many insights into the factors involved In the operation of

the processing system. A displacement parallel to the plane

of the recording beams of the reconstructed data mask image

with respect to the direct data mask image was observed.

The importance of having equal spatial frequency content in

the reconstructed and direct data page images was

discovered. Two methods of achieving good agreement in the

images at the detector plane were used: placement of an

aperture at the crystal plane, and use of an expanded

reference beam. The latter method was found to be superior,

since it allowed both Images to have the best possible

resolution. An optical and electronic feedback system for

stabilizing the relative phase of the object and reference

beams during data processing operations was implemented. -

The system proved effective for compensating gradual drift

in the relative phase of the beams. The performance of the

stabilization system might be considerably improved by

directly monitoring the light at the output of the •

processing system, rather than monitoring the video signal.

The Exclusive Or operation was repeatably obtained, and a

preliminary measurement was made of the probability of

processing error.

...
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* -Tha N~a DgtirjA1 Pgocaing RxpisriMantl

The operating principles of the Hand form of optical

-WIprocessing 
system wre demonstrated by the experiments

described in this section of the thesis. A detailed account

is given of factors that must be considered vhen

'I.constructing a Hand processing system. L

There is an important practical difference between

the operation of the Exclusive or processing system and the

operation of the Hand processing system. For data

* U processing with the Exclusive Or processor, light from the

reference beam is diffracted by a recorded hologram to

contribute to the output object beam wavefront. For data

processing with the Hand Processor, light from the object

beam is diffracted by the recorded holograms to reconstruct

the reference beam vavef ront. The holograms recorded in the

experiments were of lo- diffraction efficiency, on the order

of one percent. Low efficiency holograms would have to be

used in a practical processing system where many holograms

are recorded at the same location in the crystal.

Therefor*, to obtain detectable power in the reconstructed

reference beams, considerable power must be available in the

object beam duringj the data processing operation. A

preliminary test of the ability of the optical system to

diffract measurable power from the object beam into the

reference beam was conducted. Using an optical arrangement

. ," .. " .
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similar to that used for the Exclusive or processing

experiments, the hologram of a data page of a 32 by 32 array

of transparent apertures was recorded. Then, with the

reference beam blocked, light diffracted from the object

beam into the reference beam path was measured. Using all

the power the optical system could provide in the object

beam, the power detected in the reference beam barely

registered on the power meter, at a level of a few

nanowatta.

On the basis of this result, the original plan to

use selected apertures from the mask used in the Exclusive

..... Or experiments as the object beam mask in the Nand

experiments was modified. An aluminum plate, having a

single row of eight 3.2 mm diameter apertures with a

center-to-center spacing of 4.8 mm, was available. Using

this plate as the object beam mask had several Rdvantages.

Thie total area of apertures in the plate was greater than

the area of the apertures in the mask for the Exclusive Or

experiments. For a given intensity incident on the mask,

more light passed through the aluminum plate mask. Also,

the data pattern in the new mask could be altered by

covering selected apertures with opaque tape. Within the

limitation of eight apertures, there was no restriction on

the data patterns to be used.

A hologram of the new mask was recorded. This time,

with the reference beam blocked, a power of seve:'ml

14~
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microwatts was diffracted from the object beam into the

reference beam path. This level of power was quite

satisfactory for use in the Hand processing experiments.

Another difference between Exclusive Or processing

and Nand processing is that the critical phase relat.ionships

needed for Hand processing are recorded in the holograms. L

The opportunity to control the phase of beams during the

data processing operation does not exist as it does with the

Exclusive Or processor. Therefore, the relative phase of

the object and reference beams had to be adjusted and

monitored while recording holograms for Hand processing.

The optical components of the monitoring system are shown in

Figure 30. Light from one of the eight object beam mask -

apertures was redirected with a mirror and combined with a

portion of the reference beam by a beamsplitter. The

combined beams entered the objective of a microscope.

Fringes from the interference of the two beams were visible

at the output of the microscope. The focused spherical

wavefront from the object beam and the essentially plane

wavefront of the reference beam produced circular fringes.

At the center of the circular pattern was a spot that

changed from light to dark as the relative phase of the

beams varied over 180 degrees. An aperture was positioned

to pass light from only this spot to an optical power meter.

Thus, power detected by the meter gave a measure of the

4,.
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relAtive phase of the object and refcence beams. It was

determined that the electronics of the phase stabilization

system used for the Exciuaive Or experiments would also

serve to stabilize the phase of the beams while recording

the Nand processing holograms. The input to the lock-in

amplifier was taken from a voltage output of the power meter (
monitoring the interference spot. The stabilization system

could be adjusted to control the phase of the beams to

produce either minimum or maximum power in the monitored

spot. The difference in these two states corresponds to a

change in the relative phase of the beams by 180 degrees.

Two values of relative phase of the beams differing by 180

degrees are all that are needed to record the Nand

processing holograms.

A typical experiment to produce Nand processing

proceeded in the following manner. First a mask pattern was

defined by placing opaque tape over some of the apertures of

the mask plate. Looking in the direction of propagation of

the object beam, the leftmost aperture was always left open.

Light passing through this apecture was used by the phase

monitoring system. The next two apertures to the right were

always covered. Light passing through them would have been 1
affected by the mount of the mirror used to defleft the

phase monitoring beam. The next aperture to the right was

designated the reference bit for the patterns. The.

remaining four apertures of the mask were available for

. .,
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defining the reference pattern to be holographically

recorded, and later# the input data to be processed. he-

hologram if the mask pattern was recorded in the crystal

using 5 j&W of optical power in the reference beam, 3 #gW of

power in the object beam, and an exposure time of 60

seconds. The large apertures of the input mask produced a

Fourier transform at the crystal that was much Lore compact

than the transform produced by the mask used for the

Exclusive Or experiments. Therefore, lower levels of power

were used in the recording beams to achieve the exposure

used f or the Exclusive Or experiments. The input mask

pattern used to record the first hologram had open apertures

for binary ones in the reference pattern. Apertures in the

positions of binary zeros and the reference bit were

blocked. The phase stabilization system was set to produce

a bright interference spot. When the exposure for the first

hologram was complete, the input mask pattern was

complemented. Apertures in the positions of binary ones

were covered and apertures in the positions of binary zeros

and the reference beam were uncovered. The phase

stabilization system was set to produce a dark interference

spot. The crystal was exposed for a second time# using the

beam power level and exposure duration of the first

exposure. If the reference data pattern being recorded

contained more than a single binary one, additional exposure

S-451
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of the reference bit was required. All apertures on the

input mask were covered except the reference bit. The phase

stabilization system was set to produce a dark interference

spot. A third exposure of the crystal was produced, using

the same beam power levels used for the first two exposures.

The exposure time was N-1 times the duration for the first -

two exposures, where N is the number of ones in the

reference pattern.

The reference beam itself had previously been

projected through the optical system onto the vieicon

photccathoder so the position at wlich the output optical

bit would occur was known. The pattern used for the second

holographic exposure, with all zero bit positions uncovered,

was placed in the object beam mask. This pattern produced

the optical output bit containing the largest optical power.

The reference beam was blocked, and the intensity of the

object beam was increased until illumination due to

diffraction was observed with the video system.

The first Nand proctsasing results obtained were not

in the expected form. Instead of the circular bright spot

observed on the video -ystem when the reference beam Itself

was projected, the output of the Nand operation occurel as a

vertical band of illumination. The band was as broad as the

expected rpot, bu approximately four times as long, and

dimmed toward its ends. In spite of distortion of the

output, a Hand result was observed. If the pattern of the

All
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input mask was arranged to match the recorded reference

pattern, a dark stripe would appear in the middle of the

band of output light. Thestripe was the darkest when the

input pattern exactly matched the refonce pattern. The

stripe would take on varying degrees of illumination for

other patterns present as the input. The relative degrees

of illumination observed appeared to correspond well to

V
those predicted on the basis of the principles of the Hand

processor. Uncovering an aperture on the input mask that

corresponded to a binary one bit in the reference pattern

would darken the observed output bit. The contribution of

an additional vavefront with a phase differing by 180

degrees from the light present at the output is the cause of

the illumination decreasing at the output, though more light

was present in the input.

Output bits that appear in the form of vertical

stripes would limit the parallel processing potential of the

Hand form of processing. The form of the output bits was

attributed to the following cause. Holographic fringes are

recorded only at locations in the crystal where the object

and reference beams overlap. As stated previously, the

relatively large apertures in the input data mask produced a

very compact Pourier transform at the crystal. Therefore,

the extent of the recorded hologram was small with respect

to the diameter of the reference bean. The transform was

,'4.
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particularly compact in the vertical direition since the

Input mask contained less structure in that direction.

Light diffracted by the small recorded hologram did not

accurately represent the original wavefront of the reference

beam. Instead, the reconstructed wavefront produced a beam

that expanded, particularly in the vertical direction.

To expand the Fourier transform pattern of the input

mask, a diffusing screen was used. This is a piece of

transparent material placed in the object beam directly -

before the input mask. The diffusing screen introduces

phase variations with high tpatial frequency content onto

the object beam vavefront. The high spatial frequencies

result in an expanded Fourier transfo:m at the crystal.

Kany types of material were tried for the diffusing screen

to match the size of the Fourier transform to the diameter

of the reference beam. The best result was obtain by using

a piece of transparent adhesive tape affixed to the front

surface of the mask. The tape covered all apertures on the

mask except the aperture used in conjunction with the phase

monitoring system. Thickness variations in the celluloid of

the tape provided the required phase variations in the

object beam wavefront.

The new form of the Fourier transform required that

the power in the recording beams be increased to 60 p1 in

both the object and the reference beams to obtain practical

holograhs. The improvement observed in the form of the

-oA,
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output light from Rand operations with the diffusing screen

In place were dramatic. The optical output bit closely

resembled the size and shape of the illumination produced by

the reference beam Itself.

Figure 31 shows the results of an optical Nand

operation using a recorded reference pattern of 0010.

Figure 31a shove the binary zero result obtained with the

input data pattern matching the reference data pattern.

Only a small amount of light is present in the null. Figure

31b shows the light present when the input data pattern

differs from the reference pattern by one bit. Figure 31d

shows the largest possible output intensity in response to

an input pattern, llOl that is the complement of the

reference pattern. Figure 31c shows the decrease in the

intensity when the input mask aperture at the position of a

binary one in the reference pattern is uncovered.

The principle underlying operation of the Mand

optical processor has been demonstrated in the experiments

described above. Production of the optical Hand operation

was more difficult than production of an optical Exclusive

Or operation, but the potential usefulness of the Nand form

of optical processing makes it worth pursuing. Three

important results from the series of Nand processing

experiments are given: First# care must be taken to provide'

sufficient optical power passing through the input data mask

i .. . .. . . ...... .............--.... .. .. . .. .
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(a) (b)

((

EFIGURE 31. PHOTOGRAPHS OF RESULTS OF "NANO" PROCESSING WITH
LREFERENCE PATTERN OF 0010 RECORDED. (a) RESPONSE
TO INPUT OF 0010. (b) RESPONSE TO 1010. (c) RESPONSE TO

M11. (di RESPONSE TO 1101.

77.
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so that a detectable amount of power will be diffracted by

the holograms onto the output detector. The minimum power

passing through the object beam mask occurs when all input

bits are binary zeros, leaving only the reference bit

aperture transparent. Second, the critical task of

monitoring and controlling the relative phase of the object

and reference beams while recording Nand processing

holograms can be accomplished with the phase stabilization

system described. Finally, attention must be given to the

area of overlap of the recording beams at the crystal.

Reconstruction of a plane wave with the Fourier transform of

a mask pattern is more complicated than the common practice .

of reconstructing the Fourier transform of a mask with a

plane wave. Using a diffusing screen in front of the mask

pattern produces the benefLcal results of giving a broader

and more uniform illumination in the optical Fourier

transform produced at the crystal.

p.-
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The purpose of this chapter is to summarize the

original contributions made to the field of digital optical

processing by the work presented in this thesis. Also,

suggestions are given for additional research to build on

the results obtained.

optial Digital Parallel Prooning PrInGIR1sa

The operating principles of two forms of optical

digital parallel processing have been presented. Both forms

of processing are based on Boolean logic operations

optically produced by lightwave interference at the

detector plne. The primary optical logic operation of one

form of processing is Exclusive Or; the primary optical

logic operation of. the other form is Nand. Both forms of

processor utilize information taken from the logical

trutwi-table of the digital operation performed. The

information Is stored as thick phase holograms In lithium

niobate crystals. The processors perform the function of

searching in parallel for stored reference patterns that

match the Input data to be processed. The presence or

absence of matches determines thl state of the binary output

bits of the processors. Multiple streams of input data may

.• .*.... ...... .. .. . .. . .. .. . .. . .. .
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be processed simultaneously by accessing the recorded

holograms from different input angles, displaced from the

plane of the hologram recording beans.

The optical processing systems prevented are the-"

first known to combine the flexibility of digital

truth-table look-up operation with the power of full word

parallel operation. The speed of operation of the

processing systems is essentially limited only by the cycle

times of the input and output devices. The practical

feasibility of implementing the processing systems has been

supported in two ways. First, a computer study of the size

of the required truth-tables has shown that the amount of

information stored for producing useful digital operations

is within the previously demonstrated capacity of

holographic storage systems using electrooptic crystals as

the storage medium. Second, the optical logic operations

underlying the processing systems have been demonstrated

with experimental results.

To lend support to the feasibility of the optical

processing systems, the size of truth-tables that would be

stored to perform some useful computations have been

tabulated. The optical processing systems can perform the

function of identifying stored patterns that match the input

data even when the stored patterns contain Odon't care*

;.,
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positions. Logical reduction of truth-table information

prior to Incorporating it Into the processing systems was

determined to have a significant effect on the size and

complexity of digital operations that can be accommodated

vithin a limited system capacity.

The work of logical reduction of truth-tables

required that advanced algorithms be identified in the

literature, and then realized as computer programs. An

improvement of the algorithm used for determination of the

prime implicants of a trutb-table vas discovered in the

course of this work. The execution speed and data storage

efficiency of the algorithm were increased by the

modification. Logical truth-tables containing up to 16

input variables were successfully reduced. The tabulated

sizes of diouhed truth-tables are of interest for VLSI

design as well as optical truth-table look-up processing.

The flexibility of operation of the optical

truth-table look-up processing systems allows the use of any

convenient binary representation of the processed dat&. A

Binary Coded Residue number representation system was

particularly useful. The absence of interdependence of the

digit positions of numbers in that system allows the use of

both reduced and unreduced truth-tables that are

substantially smaller than corresponding truth-tables for

the standard binary number system.

The numerical operations of addition and

Ao-n
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multiplication were selected for study. They are central to

many digital processing applications in need of parallel

opdration. Using previously -demonstrated holographic

storage capacities for electrooptic crystals, and results of

the truth-table reduction and residue number system studies

described above, the determination was made that addition or

multiplication of binary numbers with eight bits of

precision can be accomplished in a single pass through the

optical system. Results of any desired precision can be

ob tained w ith m ultip le p ro cess ing step s . -

Many opportunities exist for further research into

truth-table redection and alternate number systems.

Investigation of advanced truth-table reduction algorithms

would support areas other than optical digital processing.

The same is true of advances in the state of knowledge about

residue number representations, which are also unde"

consideration for high speed electronic digital designs.

Application of error detection and correction techniques

known for -residue number systems to the Exclusive Or and

Hand processing systems would be valuable. Truth-table

look-up processing accrues an advantage over other forms of

processing as the complexity of the implemented operation

increases. The impact of performing operations other than

addition and multiplication on the optical processing

systems is worthy of study.
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pgrazmntAl kCAnlJ
Txporimntal studes of the principles of the optical

processing systems were carried out to demonstrate the

practical feasibility and to identify factors !nfluencing

reliable processing operation. In support of this thesis,

the logical Exclusive Or of imaged and holographically

recorded two-dimensional pages of binary data was produced.

There is no previous report of this operation including

thick holographic recordings and the use of lightvave phase

interference at the detector plane. A uniform Exclusive Or

result routinely was achieved over all data apertures.

Factors affecting the performance of the Exclusive Or

processing system wer.- identified. first, lack of

registration between direct and reconst':ucted data page

images remains an unexplained, but easily corrected effect.

The importance of providing for equivalent spatial frequency

content in the direct and reconstructed data page images has

been observed. The size of the reference beam must be

matched to the size of the optical Fourier transform of the

data mask. Alternatively, an aperture can be used'at tho*

Fourier transform plane to limit the spatial frequency

content of both the direct and reconstructed images. The

stability of the phase relationship between the object and

reference beams was a major cause of degradation in the

Exclusive Or results. A phase stabilization feedback system
. ~.



io.

was implemented to enhance the resistance of the processing

system to phase-drift effects.

A preliminary measurement of the bit error rate of

the Exclusive Or processing system was made. This was done

by fitting statistical samples of powers incident on a

modeled array of square output detector elements to ;

appropriate probability density function curves. On the

basis of these curves a threshold value of power was

determined that allowed calculation of a total probability

of error le. the processing operation. The total

probability of error value calculated was 4.72x10"4  This

figure is considerably higher than bit error rates for

-( existing electronic digital equipment. But, for a system

whose operating principles have only just been demonstrated,

this figure need not be disappointing. Ccntinued attention

to improving the factors noted above that influence

operation of the processing system should provide

considerable reduction of the probability of error.

The operating principles of the Nand form of optical

processing were also demonstrated. This is the first

reported demonstration of an optical Nand operation using

holographic patterns to define the phase relationship of the

contributing beams.

Factors affecting operation of the Nand processor

were identified. The need for appreciable power in the

object beam for data processing was explained. The phase

. . . . .•.o.
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stabilization system designed for uje in the Exclusive Or

processing experiments was modified to monitor and control

the relative phase of the beams recording holograms for the

Nand processing system. Finally, matching the size of the

Fourier transform of the input data mask tc the size of the

reference beam was found to be important to maintain the

fidelity of the reconstructed refere.nce beam wavefront. A

diffusing screen was used in front of the object mask to

enlarge the Fourier transform to match the size of the

reference beam.

Design of practical Exclusive Or and Nand optical

processing systems provides a rich field for continuing

theoretical and experimental investigation. Theoretical

studies modeling the effects of the factors found to

influence processor opera'ion will guide development of

practical processing systems. Investigations of the

engineering trade-offs involved in select;ing the diameter of - -

the reference beam and the input mask Fourier Transform

would be extremely useful. Also, determining the best

spacing for output bits at the detector plane is an

appropriate topic for theoretical investigation. A

theoretical analysis of the properties of holographic

gratings formed with one or both beams encoded with spatial

information is needed. A primary goal for experimental wo:k

should be the demonstration of each of the processing

-*.-.
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sytes n arllloperation. An investigation of the

effect the fixing process for lithium niobate crystals has

on processor holograms Is also needed. Also, investigation

of the use of other thick holographic recording materials,

such as dichromated gelatin, might be conside:ed.

''N
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ALPIPNDIX I

on the f allowing pages are the results of theI

co~mputer study of the sizes of reduced and unreduced

truth-tables. The numerical operations of addition and

multiplication are included. Also, the standard binary and

the Binary Coded Rehidue num~ber systems are included. The

number of truth-table entries needed for each output bit

individually is available, -



Table Al-i. Tot'!! number of reference data patterns r.) be recorded to
cor .r~uct the unity-result truth tables for direct binary 1

it-'on and mualtiplication of two n-bit numbers.

Addition Multiplication
U+i 2n

2 48 14

3 256 ill

4 1,280 678

5 6,144 3,733

6 28,672 18,953

7 131,072 92,334

a 589,824' 434,660



Table Al-2 .Nwmber of combinations of Inputs that produce "ones" In each
bit position of the answer resulting from the logically-reduced
direct binary addition of two a-bit numbers with an input carry.
A, corresponds to the least significant digit, etc.

n A1  A 2  A 3  A4  AS A 6  A7  A8  A9 IN

2 4 12 7 - - - - - 23

3 4 12 28 15 - 9-

4 4 12 28 60 31 - - - 135

5 4 12 28 60 124 63 - - - 291

6 4 12 28 60 124 252 127 - - 607

7 4 12 28 6U 124 252 508 255 - 1243

8 4 12 28 60 124 252 508 1020 511 2519
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Tabe A-4 Nuberof combinations of inputs that produce "ones" in each
bit position of the answer resulting from. the logically-reduced

F. direct binary multiplication of two a-bit numbers. A
corresponds to the least significant bit pohition, ea&.

n A1  A2 3  A 5  A 7  A l k

2 1 4 2 1 - - - -8

3 1 4 9 10 8 3 - - 35

4 1 4 9 30 36 32 22 9 143L

el



Table A1-S. Number of combination@ of inputs that produce "once" in each
bit position of the answer resulting from the binary-coded(residue arithmetic addition of two numbers. The input
numbers are represented by their residues with respect to
moduli, M.

14 Al A2  A 3  A4  lAk

2 2 - - 2

3 3 3 - -6

4 8 8 - -16

5 10 10 5 25

ft6 18 12 12 -42

7 21 21 21 -63

9 36 36 36 9 117

(11 55 55 44 33 187

13- 78 78 65 65 286



Table Al-6. Wumber of combinations of inputs that produce "ones" In each 3
bit position of the &never resulting from the logically-
reduced binary-coded residue arithmetic addition of two
numbers. The input numbers are represented by their residues
with respect to various moduli, M.

M Al A 2  A 3  A4  A

2 2 - - 2

3 3 3 - -6

4 2 6 - -8

5 8 6 5 - 19

6 8 9 9 - 26

7 12 12 12 - 36

(9 20 17 18 9 64
I11 23 29 22 18 92

13 33 29 31 26 119



Table AI-7. Number of combinations, of inputs that produce "ones" in each
bit position of the answer resulting from the binary-coded
resiaue arithmetic multiplication of two numbers. The input
numbers are represented by their residues with respect to
moduli, M4.

M A, A2  A3  A4  ~

3 2 2 - -4

4 4 6 - -10

5 8 8 4 -2

6 9 11 8 -2

7 18 18 18 - 54

*(8 16 24 28 - 6

9 30 36 30 6 102

11 50 50 40 30 170

13 72 72 60 60 264

f 13

.~~~ ~ ~ ~ s ......



133

Table Al-S. Number of combinations of inputs that produce "once" In each
bit position of the ansver resulting from the logically-reduced
binary-coded residue arithmetic multiplication of tvo number.
The Input numbers are represented by their residues with re-
spect to variouas modi, M.

N A1  A2  A3  A4

2 1 -1

3 2 2 - -

4 1 4 -5

5 7 4 4 -15

6 4 9 6 - 19

7 6 6 6 - 18

8 1 4 9 -14

9 17 17 15 6 55

11 22 22 21 19 84

13 34 25 29 28 116
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APPENDIX 2

Th& Photorefractive EfetX_*

The principles of the optical processing systems

presented in this thesis are predicated on thick holographic

recordings. The holographic recording material chosen for

the thesis experiments was crystalline lithium niobate

(LiNbO3 ). The mechanism in lithium niobate responsible for

recording holographic fringes is the photorefractive effect.

The photorefractive effect is optically-induced

changes in the index of refraction of a material. The

effect results from the combination of two processes:

optically-induced charge migration, followed by electrooptic

modulation of the index of refraction. The dominant cause

of photorefractive charge migration in lithium niobate is

electron transport produced by the bulk photovoltaic effect.

Other possible causes of charge migration are concentration

gradient-induced diffusion and electric-field-induced drift.

The bulk photovoltaic effect may occur in all

crystals with structures lacking inversion symmetry.

Previous opinion held that a crystal must be ferroelectric

to exhibit the bulk photovoltaic effect, but bismuth silicon

oxide (BSO) has provided a counter example. That crystal is

not ferroelectric, due to the cubic structure of it-

.......................................
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lattice, but is weakly bulk photovoltaic. The bulk

photovoltaic effect has also been called "anomalous

photovoltagel or Ophotogalvanic effect.' "

The bulk photovoltaic effect was first described by

Glass et. al. [451 in 1974. It is a stationary bulk

phenomenon and is characterized by a short-circuit current

that is produced under unifcr= Uilumination. It is

anisotropic effect described by a third rank tensor

relation. The bulk photovoltaic effect differs from

ordinary -photovoltaic effect, seen in P-N junction devices,

in that the current density is not expressable as the

gradient of an electrochemical potential of the charge

carriers. The open-circuit voltage developed by the bulk

photovoltaic effect is not limited by the band gap of the

material. In iron-dopcd lithium niobate, the open-circuit

voltage may approach 10 kilovolts. The short-circuit

current density is about j_10 -10 Amps/mm2  for an incident

optical intensity of 0.01 watt/mm 2. The current density is

given by:

- ~~~3 * I(21

where K is the photovoltaic coefficient (sometimes called

the Glass constant), a is the optical absorption, and I is

the optical intensity.

The origin of the bulk photovoltaic effect was

recognized by Glass to be spatially asymmetric electronic

4 .° o"%

no%°.
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transition probabilities that result from the asymmetric

potential energy well associated with an electron donor

impurity.

For lithium niobate, the probabilty of an excited

electron moving in the optic axis direction is greater than

that of it moving in the opposite direction. The optic axis

is oriented perpendicular to the fringes of the light

interference pattern that is produced by the object and

reference beams during recording. Electrons are

photoexcited in the bright regions of the fringe pattern.

They are driven by the bulk photovoltaic effect in a

direction along the optic axis. After travelling a distance

determined by their recombination lifetime, the electrons

become retrapped. If retrapping occurs where the light

intensity is small, the probability of re-excitation will be

low. Since the bright and dark fringes are approximately

one optical wavelength apart, the electron migration occurs

very rapidly. The spatial variation of electron

concentration produced is a replica of the light intensity

interference fringe pattern. The electric field associated

with this space charge pattern modulates the index of

refraction of the material through the electrooptic effect.

The refractive index modulation also miaics the light

interference pattern and forms a phase hologram.

( Crystals tnat exhibit the bulk photovoltaic effect

. ~ ~ ~ ~ • .. .
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(
also exhibit the linear electrooptic effect. Both effects

require a lack of inversion symmetry in the crystal

structure. Crystals that have inversion symmetry also can

exhibit the photorefractive effect. For such crystals,

charge transport is by diffusion or by drift due to an

electric field. The quadratic electrooptic effect modulates

the index of refraction in these cases.

For the linear electrooptic effect found in lithium

niobate, the amplitude of the refractive index modulationKfor light propagation in the y-axis direction and light

polarization in the z-axis (optic axis) direction is given

by:

An -1 3 E/ 2  (2-2)

where nE is the principal extraordinary index of refraction,

r3 is the appropriate electrooptic coefficient for this

geometry, and E is the amplitude of the space charge field.

The resulting diffraction efficiency from Kogelnik's

first-order two-wave coupled-wave theory is given by:

DE sin2(and/lcose) (A2-3)

where d is the thickness of the crystal, A is the fteespace

wavelength, and e is the angle of refraction inside the

crystal for the incident reconstruction beam. For 0.1%

diffraction efficiency holograms and typical laboratory

Iss°- "°.
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parameters, the refractive index modulation amplitude is

-6ul This corresponds to an electric field amplitude of

E a6xi? volta/a.

An estimate of the n~umber of superposed holograms

j that may be recorded can be obtained by assuming that at

I some point in the material, all of the index modulations are

I * in phase and add to use the material's entire available

dynamic refractive index range, aN. The number of possible

superposed holograms would then be given by aN/an. For

lithium niobate, AN=103  Thus for the practical example

given, the maximum number of holograms that can be recorded

is about 1000.
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Dependent and Independent Constraints for a Multiple
objective iterative Algorithm

Joseph W. Meit and William T. Rhode#

Georgia Institute of Technology
School of Electrical Engineering

Atlanta, Georgia 30332

Constrained iterative algorithms have been applied primarily to single

objective applications, where by objective we mean that distribution that is

to be reconstructed from partial information or synthesized vith desired

characteristics. In a recent work by the authors.
2 Fienup'a error-reduction

algorithm was extended to multiple objectives, as shown in Fig. 1. and was

applied to a specific synthesis problem with two objectives. In this paper.

we illustrate an important characteristic of multiple objective iterative

algorithms, dependent constraints.

Our problem is the synthesis of two pupil functions ?1(u) and P2(u). for

use in the incoherent optical spatial filtering system in Fig. 2, such that a

desired bipolar spatial impulse response or point spread function (PSF)

results. The effective pupil function P(u;AI,A 2. ) of the optical system in

Fig. 2 is given by3

P(u;A I.A2 ,4) - A ej(u)eo + (I)

and the corresponding PST f(x;AI,A21 0) by

f(x;A*A 2.*0) - 2p(x;A ,9 21)

. Atpl(x)l 2 44AP 2  )l 2  (2) .,'

+ AiA 2 pl(x)p2 ()e3 + p1(x)p2(x)e* ]

where the pupil function P(u) and the coherent spread function (CST) p(x) form

a Fourier transform pair. A desired bipolar PSF f(x) may be synthesized

through control of transmittance factors A1 and A2 and phase .

Lohmann and Rhodes identify two distinct regimes for implementing bipolar

PSFa in this way, pupil interaction and pupil noninteraction.1 The

synthesized PST fW(x) resulting from pupil noninteraction is given by

fs(x) - Atp1 z)I
2 . A2 p2 (z)I, (3) ..

and for pupil interaction by (where" $(x) - arg (p1(x)), 1-1,2)

f*(x) - 2A A2 1Pl(x)p2(x)1(cos#, + - 92(W) (4) -.

- CoSI~b 1 *1(x) - 02(1)".

'A...
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where * and 0 are two different. but fixed, values of phase 0 in Fig. 2.
a bSince it is the pupil functions Pl(u) and P2 (u) that describe the system,

they are our objective functions. From a practical optical standpoint, the

pupil functions must be of finite extent; thus we desire the following of our

syste :

1. synthesis of a bipolar PSF

fs(x) - f(x), where f(x) is the desired bipolar PSY.

II. finite extent pupil functions

p (u) - p (u) rect (1) wherew is the extent of the pupil.

With respect to Eqs. (3) and (4). Condition I is a dependent, or mutual

constraint, since both pl(x) and P2(x) must jointly satisfy the constraint.

This is in contrast to Condition II, where the constraint on Pl(u) in no way

determines or affects the constraint on P2(u). Understandably, greater

freedom exists, and more ingenuity may be required, to satisfy a dependent

constraint as opposed to an independent constraint because there are no

explicit constraints on the objectives.

By definition of the error-reduction algorithm, a point not satisfying

the domain constraints is replaced by a point that satisfies the constraint

and is a minimum distance from the original point.1  Figure 3 is a vector

diagram depicting the minimum changes necessary to assure Condition 1. It is

assumed that the desired PS? f(x) is dependent equally upon pl(x) and p2(x);

thus modifications to one are equal and opposite to modifications of the other

as long as Condition I is maintained. Condition I is therefore satisfied for -"

the pupil noninteraction regime. assuming 41 - A2 - 1, by

. t Ipl(x)12  IP2(x)1 2 + f(x)
1p (l [)I 2 (5a)

1p' W Pos Pl(x)12 IP2(x)1 (b)

where POSIg(x)) is a half-wave rectification of S(x). The phase is

undisturbed. For the interaction regime. assuming the modified point is

n a ,2A 1A2 " 1/26 *% 0, and b S ' Condition I is satisfied by

1(x! - (x)I - 1C(Z) # *2 () * *
Te,"T a ,x)?. (6a)

. . . . . .



Algorithms implemented' using Zqs. CS) a"d (6) were tested

experimentally. With the bandpass f ilter in Fig. 4 an the desired bipolar

psys Figs. 5 and 6 represent pupil noninteractive and pupil interactive

synthesis of the PSY after 100 iterations using Eqs. (5) and (6),

respectively. The normalized squared error is 0.0875 for the noninteractive

regime and 0.5137 for the interactive regime.

The high error for the interactive regime ay result from the great

amount of freedom the algorithm presents; although the error is reduced vith

each iteration. the reduction is slight. For this reason, the algorithm vas

modified to force the synthesized point equal to the desired, the addition of

A£ to fe in Fig. 3b, as opposed to altering its projection onto the real

axis, the addition of 6, . In the limit of a large number of iterations.

A and A should b~e equal. The results of this algorithm are presented in
1 2

VSg. 7. The normalized error is 0.0276.
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Complex covariance matrix inversion with a resonant electro-optic processor
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Abstract

A new optical method, based on continuous-time relaxation methods, is presented for
implicitly inverting the estimate of the covariance matrix associated with a set of signal
waveforms. Complex valued signal information in conveyed by biased temporal frequency
carriers, a resonant electro-optic device serving both to evaluate the covariance matrix and
(as a spatial light modulator, or SLN) to input that matrix for inversion.

Introduction

We present here the theory underlying a new incoherent optical approach to inverting
the covariance matrix estimtte associated with a set of signal waveforms. The scheme, based
on a continuous-time algorithm ano using biased temporal-frequency carriers to convey
bipolar or complex-valueo signal information, has certain potential advantages over
previously reported discrete iterative approaches: (1) all computation is analog, ana A/Dand D/A bottlenecks are thus eliminated at all stages of processingl and (2) the method
avoids dynamic range complications that might arise from biased real-imaginary component or
three-component representations of complex signals.

We begin by presenting the essential features of the relaxation method for implicit
matrix inversion and then describe modifications appropriate for implementation with
complex-valued signals conveyed on temporal frequency carriers. No then present the basic
s.c. electro-optical processor concept. Finally, potential difficulties with the concept
are discussed, along with modifications necessary to correct them.

Matrix Inversion b, Relaxation Method

Assume the matrix equation

is to be implicitly inverted: i.e., vector x is to be solved for in terms of.. (Consis-
tently ttroughout this paper, lower-case letters with underbars denote vectors, and upper-
case letters with underbars denote matrices.) Incoherent optical processors have been built
that solve for x via the Iterative operation

1+ ( + !)-k" (2)
where I denotes the identity matrix Ill. Complex arithmetic has been implemented using
nonnegitive-real three-component or biased real-imaginary representations for the matrix and
vectors, allowing optical implementation using light intensity as the carrier of informs-
tion.

An alternative method for implikit inversion of the matrix is based on continuous-time

relaxation algorithms. Such methods were recently proposed for electro-optic Implementationby Chong and Caulfield 121. The basic idea is illustrated by the system of Figure 1, which
is configured to solve the pair of equations (all values can be complex)

Y1 * 1 s2 (3s)
Y2 " *21x1 0224 2 O3 .

for ki, x2 given yl, y,--i.e.
. 

to solve for vector x in Eq. (1). Inspection ,.. the figure
showi, that the system ia so configured that if equilibrium is attained, then x, And x2 mustsatisfy Eq. 13). Generalization to the NxN case is atraight-forward.

Q.. .....



F

As discussed In 12J, the system Of Figure I in stable Only when matrix K i
positive-.definite, i.e.. when 4ll the~ Oigenvalues of IL have real parts that are positive
(see. *.q. . 131. Ch. 6). The significance of. this condition In Illustrated by the simple
scalar (non-vectorial) example

y e x, (4)

where the objective to to determine scalar x given scalars y and M. All three quantities
can be complex-valued. A conlditiona~lly stable system for solving this equation is shown in
figjure 2. Taking Lapilace transforms of the different quantities in the systenl of Figure 2
and rearranging terms we can express system operation in terms of the equation (assuming

X(s) *(/amj() 5

To investigate the behavior of the system, we let yMt be given by

yMt - yeu(t), (6)

where ult) is the unit step function and Y. is a constant. The Laplace transform of y(tl
is, under these conditions, given by (l/*)Y,. and Eq. (5) then becomes

X(s) - [l/(s~m))Y 0/s). (7)

Partial fraction expansion and retraniformation leads Immediately to the solution

x(t) - (Y 0/m)1l -.*xp-mt)lu(t).()

So long as m satisfies the condition

Re(m) > 0,() -

x(t) converges for large t to the desired solution x 10. However, if Re~m)<O, x(t)
continues to grow and equilibrium is never ceached.

It is useful to us later if we replace the integrator in the system of Figure 2 with a
simple RC filter. This is effected analytically If the factor I/s In Eq. (5) is replaced by
the factor I/Csb), where 1/b is tiv time Constant Of the low-pass filter. Assuming y(t)
Y u(t), the resultant time-domain equation is

N~t - 1Y '(m4.b)) 11 - exp(-(m+b)t)Ju(t).

In order for x(t) to approach the desired solution Y0 /m for large t It is necessary that

Retmeb) - b + R*(m) > 0, (11)

and b must satisfy the condition

b < j. (12)

Going back to the matrix case, as noted above. the system of Figure 1 (or its generali-
tation for problems of highsr dimensionality) is stable only if matrix K Is
positive-definite, meaning that all eigenvoluea of M have positive real parts. This Eondi-
tion reduces to condition (9) for the non-vectorTal case. Fortunately. the covationce
matrix associated with a set of signal wavetforms is indeed posit ive-def inite and, in fact.
hernittian, implying that its eigenvalueos are both real and positive (so*, e.g.. p. 249 of
Ref. 141). A, a consequence, non-oscillatory convergence of the relaxation method is assur-
ed, at least in theory, for the problem of interest to us. Were K not positive-definite, it
would be necessary to go to a more complicated relaxation processor, as discussed in 12).

Temagral [recuscy Carriers for Complex Signal Representation

The system of Figure I can be modified to operate with conglex-valued vectors and a-
tr'.cos using real signal representat ions. For incoherent alectro-optic implementation.
jonnegative-real representations of thie quantities are requiredl with varying amounts of
coaputiiitiial Overhead such methods as threte-component and biased real-imaginary encoding of
complex numbers can bi used (see, e.g..,S)

Of interest to us in this note is a nonnegative-real representation based on temporal
frequency carriers. We introduce the idea by again using the scalar case of Eq. (4) as an
example. Let coaplex signals a, a. and y be given by



a. Islexp[Je) (13a)

a lylosApU*oy (13c)

where

*earg(s) (14a)

ey a argty) (14b)

on - erg(s). (14C)

These complex quantities are represented In the system of Figure 3 by the time vaveforas

jx(t)Icos(Wo t + ax(t)) (155)

Iy(t)Icos(wot + 0t)) (Isb)

The bandpass filters (er) are assumed to have unity gain and, for now, linear phase charac-
teristics over the bandwidth of concern. in Figure 3, signal Ix(t)lcoM(Wot*O()
represents an estimate of the solution of Eq. (4). The magnitude 1zj and phase *x varyslowly, in accord with, the bandwidth of the narrowband filter (NSr).

It can be shown that the waveform jx(t)jcos(wot + *3 (t)) settles down to the desiredresult (IyI/Imcos(W t c 0 - *m ) , to within an error determined by amplifier gain G and byspecific charact-ris~ics *I the high-Q filter, so long as the stability condition

Re(=) - '.lcosem > 0 (16)

is satisfied. To Illustrate the basic idea we present the following graphical example. byinspection, the negative input to the differential amplifier is given byxalcos(wet + Ix + 6) . The output of the differential amplifier is thus

G1ycos(ot + a) - IxmlcoS(w t + m + 60). (17)7 0 X
The input and output of the differential amplifier are shove In phasor form in Figure 4,where it has been assumed that G-1. The difference signal, represented by phasor

ylexpo yI - IzatJxpl,($1 + on)J, (IS)
is applied to the high-0 filter. From Figure 4(c) it Is clear that this signal has magni-tude and phase appropriate to drive the output of the high-O filter in the direction of the
solution ly/meiap (J(1O - .

The signals of Figure 3. although real, are bipolarl i.e.. they are not nonnegntive.
However. as demonstrated in the following section, bias signals can be added where necessa ryto allow electro-optical implementation. The bias signals tre easily filtered out in elec-
tronic subsections to simplify overall system operation.

In the following discussions we shall assume that the high-Q filter of Figure 3 Ischaracterized by a single complex pole pair. (In practice the filter would probably beimplemented by means of a pair of simple RC filters in inphase (cosine) and quadrature
(sine) channels of a baseband equivalent filter. See Sec. 5.1.3 of Ref. (4]). Under thesecircumstances, in terms of the phasor representation, sytem operation is the Same as that of
the sytem of Figure 2 with the integrators replaced by RC filters.

Basic A. C. Electro-Optic Processor Concept

In this section we describe the basic principles of an a.c. electro-optLcal processor
for solving Eq. (4) by the relaxation method. The key to system operation is an SEA thatrealizes matrix m by an arroy of cells, with the (i,J)th cell being charctericed by a time-
-varying light intensity transmittance of the Corm

*IS B + mIjlcoe(*ot + 6j),

where again -ImL+Iexp1Jji1 Blas B and matrix element magnitude Im1 I are normalized
such that Tij alwAyS ls alal ue between zero and unity. In order o assure system

2..



stability, 1I asumed to be positiV.-deflnito.

overall system operation Is shown by the block diagram of Figure 5. Certain
mixer-filter combinations have been made unnecessary in the digaram by the use of complex
representations tot the signals. In the diagram b and Q represent respectively a tmnstant
bias vector and a constant bias matrix. The q anitites x, and intermediate quantitites
are vectorial In nature, as indicated by the bold signasflow arrows. The output of the
electro-optic matrix-vector multiplier subsection is

(11 * flea pIJwot1[b + ReXptjmot3)

w(1X.) exptj2at + (Nb + Dx)esp[ jut] 9 Sb, (20)
only the first term of which Is passed by the bandpass filter. The optical matrLx-vector

multiplier is in most respects like the system described by Goodman et &l. 151. vowsv~r:
as indicated above and discussed below, each complex matrix element mij is conveyed o-1 a
temporal frequency carrier. as in 9q. (19).

The 2-D SLK representing H Is made up of a 2-D matrix of individual resonant
piexoelectro-optic light modulators (61. A resenant piezoelectro-optic modulator is simi-
lar in many respects to an ordinary linear electro-optic modulator, but it is operated at
the piezoelectric resonance frequency of the crystal. At this frequency, shear and thick-
ness mode vibrations of the crystal result in large sinusoidal fluctuations of the birefrin-
gence of the crystal with the application of relatively small s.c. voltages. If placed
between crossed polarizers and drivei at the resonan.e frequency a. , the modulator produces
fluctuations in light Intensity transmittance T in accord with the equation 161 -.

T sin 
2

(l/2)#cosWot], (21) L

where * , the peak birefringent retardation, is directly proportional to the amplitude of
the applied sinusoidal voltage.

Two characteristics of the resonant piexoelectro-opttc effect are of special interest
to us. First, it t an s.c. effect suitable for complex processing. Depending on the cry-
stalline material used, resonant frequencies in the range 0.5-500 NMs appear to be easily
obtained 16,71. Of equal importance, because of the mechanical cesonance, voltages required
to achieve significant changes in transmittance T are typically several orders of magnitude
lover than those required for the d.c. linear electro-optic (Vockels) effect. Specifically,
a.c. voltages in the 5-20 volt range are adequate in reported cases for high efficiency
modulation 16,71.

For optical processing purposes we want device transmittance T to vary linearly with
the applied signal. If the crystal used has some natural birefringence or is illuminated by
light of the appropriate elliptical polarization, tho operating point of the device can be
shifted such that T has the form -'.

T * stn
2
[(*/4) + (6/2)cos act). (22)

Theoretical considerations show that for an applied driving s.c. voltage V at an arbitrary
frequency a , device response can be written as

T * sin
2
(1/4) + S(V/V0 )cos at], (23)

where Vo is a constant that appears typically to be in the 1-20 volt range, and i t a
resonance paramter given (in the vicinity of resonance-far off csonsece T is essentially
constant) by the standard resonance function

- -*(a)- 1 . (24)

*,ji*402 ( )2,1/2

Device 0, unless deliberately reduced, is typically at least 103, and the tesonance to thus
extremely sharp.

So long as the applied voltage V is kept sufficientl small. T can be written in th#
form

T a 1/2 + I(N(V/Vo)cos at. U2S)

This expression does not take into account any phase shifts Introduced by the resonance
as a changes from so  a a point addressed later.

(p-,.
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The high-O resonance just described can be exploited in estimating the colariance Ma-
trix. Adopting the notation of Ref. 141, the elements mij of Nare given by

- (s~t~s;t)).(26)

vhee s1 (t) is the ith co&.plex signal entering Into the covatiance matrix calculation, and
otes expected a us. In a digital signal processing system m is estimated by numeri-

cally calculating the uniformly weighted average*

m j-(L/T) I 8005 JOi) di (27)

for thae different signal pairs. The Integration time T is determined by overall system
operating parameters. The resonant filter approach allows the calculation of an
exponentially. weighted average Of the form

t
-i 1T s 3Tsj(x~exp1(t-Y)/TI dt. (263)-

*which, for the high-Q filter case, approximates (27). figure 6(a) Illustrates estimator
operation schematically for a single paIr of complex signals, shown as coming from two an-
tennas, Figure 6(b) ahowns the saome operation in complex signal form. In the le*.cer# the
resonant filter is represented by the transfer function associated with itr baseband equiva-
lent, which is a simple RC filter. The output of the filter is slowly time-varying, with

*approsimate bandwidth 1/T. ~
It should be emphasized that the high-Q filter of Figure 6(a) is incorporated

effectively in the electra-optic device Itself and that its output is not an electrical
signal but rather the modulated light transmittance T of eq. (25). Figure 7 models the
essentisi input-output characteristics in terms of a resonant tuned circuit and the
electro-optic transfer characteristics. The Input signal io the product of the two IF
signals of Figure 6&

"in (t) . i Ii(tlicos((ai I )0 t + arg(si(t)iIls J t3coalw~t + arg(sj(t))). (29)

The filter is tuned to the difference f requency wo Estimation of the entire coveriance
matrix H requires that all signal pair prcducts be calculated and applied to beparate elec-
tro-optTc elements in the Matrix SLN.

Assuming the suall aiignal approximation leading to Eq. (2S) is satisfied, the trans-
mittance of the 11th cell of the resonant ELM is given by Eq. (193,# where mi.- is given by
Eq. t2g). The transmittance function evolves with a bandwidth of IT, whores1 the LaIXa-
tion algorithm converges at a rate govorned by the smallest eigeivalue of M, as noted ear-
ier. Stability and convergence can be improved if Gras-Schmidt rthogonalixation
processing Is performed on the array element signals (13). See. 6.3).

We noted In conjunction with Eq. (25) that a phase term was ignored in the
transmittance response T of the resonant electro-optic modulator to & sinusoidal excitation

*atfrequency w #to * The actual phase shift io given by

4(w) - -tan (2( w )18 (30)

c-3nsistent with the simple resonance characteristics of the Jevice. if we wanted a propor-
tional relationship between the signal applied to an SLN cell and the transmittance

*response, this phase shift could hurt us. Recall, however, that the resonant cell io being
ued to estiamte, by its high-Q filter characteristics, the covariance matrix M. The phase*Of Eq. (303 is a natural part of that filtering operation and is fully consistent with the
desired result.

Discussion of Some Optential Problem Areas and System Modifications

In this section we briefly address three topics related to practical implementation of
the schems effects of harmonics generated by the resonant ELM; signal-to-bias
considerations; and a hard-limiter modification for covariance matrix estimation.

IfI the next higher-order term is Included In the approximation of eq. (25) for T. the
result is

T -1/2 + 6(w)(V,_V0 )cos t -(I/3)P
3 (.)(V/v*3 3cos 3 st. (31)

.................................................* %
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The third term of the app oximation co3tains frequency compofnents at a and 3a The term
at a has amplitude (1/4)391.)( V/V0) in cubic in the signal voltage v. Since this term

I n a thi samoe frqenc has thereseed enetrmison idli item wrln ily avedrt€oafe c on t : outites th t veepsor maix muliation inoration Theseeit y onf hs

uneie tc msbeaayeinodrtdeemnwhthesi m mou ainvel s

Te bias In t resem diagramO Figurers mosto esily'net equalto a constant,
sufficiently large to keep all vector comnsne non-negatie. Hoher nImprovement In

- system signal-tO-bhse ratio and, hence. In system dynamic range can be achieved by allowing

to vary as the agnitule of the Input vector. In tems of the problem of interst, whereth input to the vector-matrix multiplier ia the current estimate of the vector L, each
component of b would be given by

i 'xi''' (32)
To clarity the point, we consider the scalar problem. The vector-matrix tulu.dplication

then reduces to

l(t) + IxRtIcos( 0 t + a x(tM) (a + jcos(w 0 t +~ I ". 3

Although b1t) could be set equal to the constant value 0s(IX(toI. it is clear that dynamic
- Trange Is maximized if b(t) a Si nI. for the bias i3 then Just sufficient to preserve non-negativity. So long as the carrier frequency a is such larger than the effective bandwidth

of Ix(0)I. the resultant terms proportional to%(t) can be filtered out subsequently in the
electronic part of the processor. Not* that matrix bias a Is fixed by the SLX
characteristics and cannot be improved.

A potential difficulty with the processor as proposed is the need to calculate the
product of Eq. (29). In the form written this calculation requires the ute of afour-quadrant multiplier, since both inputs are modulated in amplitude. However,
four-quadrant multipliers are unavailable at the Ir bandwidths generally of interest, and
this computation can therefore present serious difficulties. A way around the problem in-
volves hard limiting one or both of the signals entering Into Eq. (29p i.e., stripping off
all amplitude modulation. Under these circumstances., simple blaned mixers can be used.
Hard limiting is used In connection with the Bowel a-Applebaum method for phased arraysignal processing to reduce the Cep-endence of array performance on the strength of the
external noise field (Ref. 4. sec. S.3.5). The effects of hard limiting with the processor
architecture proposed here must be studied further.

Concluding Remarks

In this note we have presented an electro-optic scheme for Implicitly InvertingI
covariance matrix estimates that keeps complex modulation Information (magnitude and phase)on biased sinusoidal carrier.. The temporal carrier method elininates the need for the
repetitive overhead computations that are required wita other nonnegative-real
reprosertations. There appear to be no fundamental reasons the scheme should not work.Perhaps the most Important question to be addressed at this time relates to the dynamic
range that could be expected of such a processoor. The temporal carrier scheme is attractivefor Its elegance. Whether it represents a t;.uly significant improvemf.;nt over schomes based
on three-component or biased two-component representations of complex signals is a question
that cannot be answered without further study.
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Abstract Its Iage overfills the aerture by a sufficiently -

partall coeren gohls-illinaio*large margin to assure that 1b. Imaging Operation
A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i patallohrninblrIlmna nt oer in wave Intensity . If & mask that

Imaging system equipped with complementary masks contains two horizootally-spaced pinholes io
In source and pupil planes can be used to perform placed In the pupil plane . the imaging operation
Image enhancement operations such as directional Is characterized by the OTT shomn in Fig. 2.
@r non-directional edge enhancement and emphasis Bandposs structure is emphasized is the Is&&&. At
of spatial bandpass features. Wi1th many objects the same time. low spatial frequency structure and
the use of complementary masks results In high- bias ia also trantsmitted.

contrast Images. Underlying principles are
eaplained and preliminary experimental restsl;
presented.

0?? CROSS-SECTION

Introduc~ion

conventional Imaging systems. particularl)
microscopes. are often modified in one way or
another to improve their ability to Image specific
classes of objects. Tvwo examples are Zerniks
phase contrast microscopy and dark field micro- 119. 2. 0?? asmociated4 uvth two-pInhole,
acopy. Most modification schemea are baaed pupil mask.
on coherent optical Imaging principles.

1 
and

Illumination Is usually provided by a point-like
source or its equivalent. in this paper a schema
Is described that has much Iq %oinon with The sysem Is now modified by placing in the
spatially incoherent iaging * and chat of fers source plane a mask that Is transparent except for
advantages characteristic of both coherent and two opaque dots, which are perfectly imaged onto
Incoherent imaging: high contrat for the ou.put the two pinholes in the pupil plane. if the
yet the absence of coherent artifacts such as are object is non-diffuse, the effect on the Image is
Introduced by dust on lenses. The scheme is dramatic: bias and some loe spatial frequency
Illustrated by way of example In the following structure Is strongly reduced, while, the bandposs
section. then certain general aspects are structure remains largely unchanged. Figure 3
discussed and additional examples presented, shows the Image of a mon-iffuse teat target, first

with conventional incoherent imaging, then with
An iamile - Bandoass [maging the two-pinhole meek is the pupil plans, and

fiually with both the pupil plane mask and the
Figure I @howe en Imaging system of the complementary source plan* mask present. White

Koehler Illumination type, where the source is light illumiaton was sed.
imaged Into the pupil. The source Is assumad to
he spatially Incoherent and uniform In Intensity. The reason for the dramatic change in image

lift*mAW $MP mmf 48M, PMA Of appearance is explained by Fig. 4. which
. n n nIllustrates for the specific case where the object

. ... ... consists of a transparent numoral "4." in a uniform
mdIso-transaittance background. Light from a

particular point on the source passes through the
A~.. .. 4 obet dIs focused auto the pupil plane. The

-LL* I L I I I geometry of the system Is such that the Fraunhofer r
1~ 1 ~ pattern of the object is projected ort the

pinhole meek. The figuse shove the Fraunhofer
Fig. 1. larging system with Koehler-type pattern octupying one particular position relative

Illumination, to the pinholes.

32CRSSO-4/3ooo/ 03 $.ao.0 1963 l111
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(a) (b) Ic)

Fig. 3. image of non-diffuse test target: (a) conventional incoherent image; 1b)
inage obtained with two-pinhole mask in pupil plane; (c) image obtained with
two-pinhole pupil plane mask and complementary source plane mask.

prevented from passing through to the Image plane.
The result is an Image of increased contrast and
(because of the finite diameter of the pinholes)
reduced low spatial frequency content. The
removal of the undiffracted light sakes the scheme
similar to dark ground microscopy or schlieren
Imaging. Nowever, system operation is much more
complicated because of the extended source and

0 two-pinhole mask.

Because the system is now partially coherent,
fig. 4. Diffraction pattern from nuneral it Is not possible to describe the Imaging

14* incident on two-pinhole mask, operation in terms of a transfer function: the
an produced by off-axis source Imaging is linear neither in wave amplitude nor In
point, wave intensity. Nevertheles, qualitatively, it

is not unreasonable to think of the resultant
Each and every point on the spatially Image as being a bandpase filtered version of the

incoherent extended source projects a ob!ect Intensity transmittance modified by a
corresponding Franhofer pattern on the mask. If reduction im bias.
the source is perfectly uniform, these Fraunhofer
patterns occupy all possible positions relative to Some Ceneral Characteristics of the Scheme
the pinholes. For each position, the light is
"sampled" by the pinholes and a modulated fringe If the objective of the scheme is to perform
pattern Is produced in the Image plane. The spatial filtering-like operations on the object
superposition of these fringe petterno is the intensity transmittance while at the save time
actual Image observed. (The fringe patterns add improving the contrast of the Image, then it is
on an intensity basis because of the spatial desirable that the pupil plane mask (which
incoherence of the source.) determines the "filtering" characteristics of the

system) and the source plans mask be largely
Now assume that the source plane mask is complementary to each other: where one has a high

present-a mseek that is complementary to the pupil transmittance, the other should be nearly (or
plane mask. In this case, the Fraunhofer patterns totally) opaque, end vice versa. This condition
occupy all possible positions in the pupil plane assure. that light that is not diffracted by the
except those two positions that would place the object passes through to the Image plane only with
aeroth diffraction order (dc spot) associated with very 13w amplitude. it would appear that best
tee patters directly on top of a pinhole. In most contrast is obtetnable with binary masks, i.e.,
regards the resultant image is the same as before, masks that are either fully transparent or fully
Uowever. for a relatively non-diffuse object, much opaque. fowever, binary masks may not be the best
of the light tnat produces bias in the Image is choice for certain classes of objects.

33o4A
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If complemntary bnaery moe are used in Figures 6 and 7 em the next pagoe how the
source end pupil planes. it is desirable that the results of ame simple experiments with couples.-
fretownal erea of the pupil mob occupied by tary binary source and pupil maske. Figure 6(s)
transparent regis'na be relatively small. otherwise to a reference image. obtaimed with no masks in
the object Fraunhofer patterns incident on the the system. Figures 6(b) and 6(c) were obtained
pupil mseek ay not be able to 2ccupy a with a double-slit m8sk In the pupil plane,

satisfactorily large number of positiona relative Fig. 6(b) without a complementary source plane

to the mek structure. maske. FIg. 6(c) with. Figure 7 hoews the results
vith a thin annular aperture in the pupil plane.

A general mathematical analysis of the scheme FIg. 7(a) with fully incoherent illumination. Fig.

is not particularly illuminating because of the 7(b) with a complementary source plane mk In

fundamental nonlinear nature of the partially place.

coherent imaging operation: the resultant
integral expressions are complicated and Concluding Remarks

uninformative. Furthermore, the consideration of

*specific, analytically tractable exanples is risky As noted above, r general analysis of the

in that conclusions may be sugested that are not *cheme is not particularly enlightening. lntegrs0 -'

valid in general. Nonetheless, some understandlng equations can be written that describe system

of potential limiations of the scheme can be made operation, but they provide no particular Insight

by assuming different specific characteristics for into potentially useful configurations. System

the complex wave amplitude transmittance of the performaz ce depends strongly on the specific class
object. of object being imaged--whether it is diffuse or

mn-diffuse, of high or low contrast. and so

One case where a general conclusion appears forth. It is worth noting that this situation is
possible ia that of the highly diffuse object, not significantly different fro that found in
e.g., where a phototransparency Is placed in microscopy, where specific techniques (e.g.. phase .

contact with a diffuser. In this case the objsct contrast microicopy) are applied beneficially onlr

Frau. hofer pattern is sp'.ead out In the pupil to certain types of objects. If the techniques -

plane, there is no predominant dc spot, and there discussed in this paper are to find significant
is thus no significant Improvement in image application, an extensive experimental

contrast. So long as the source distribution is Investigation is required. It ny be that for

not drastically modified, little change in the certain classes of objects-specific types of

appearance of the Image distribution from that cytological specimens, for example--this scheme
obtained with a totally uniform source is to be will provide useful feature enhancement.

expected.
More extensive Investigations are In progress

other Examples to test the effects of different source and pupil
mask combinations on different kinds of Imagery.

Several different pupil and source mask Of particular interest are complementary binary
combinations that are more-or-less general purpose masks where the pupil maske contain numerous
In nature are euggested in FiS. 5. The combination pinholes positioned with certain spatial

in Fig. 5(a) would be suitable for enhancing autocorrelation characteriatics. We believe that

vertical edge structure, whereas that In Fig. 5(b) this approach will allow for the synthesis of a

is appropriate for non-directional edge enhancement wide range of "filtering" operations and still
(essentially high-pse filtering). Note that in allow significant Improvement in image signal-to-
both case the results can be controlled somewhat bias ratio with low contrast inputs.

by changink the relative diaeters of the pupil
opening and the conplementary source obstruction. This work was supported in part by the U.S.

The non-directional enhancement of bandpass Army Research Office under Joint Services
,tructures can be achieved with the masks of Fig. Electronics Program Contract DAAG29--X-0024.

3(c). a 31. Kiltuml Is with litachl, Ltd.. Production

PUPIL OPENIKGJ Engineering Research Laboratory. 292 Yoshida-Cho,
Toteuka-Ka, Yokohama 244, Japan. Be was a

visiting researcher at Georgia Institute of

SOURCE IMAGE .. Technology when this work was done.
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Abstract

A conceptually simple method for producing a hologram of a coaputer-apecified object is
to Illuminate the photoeensitive recording plate with a reference wave end trace out the
object distribution with a point of ligt~ moved by a computer-controlled scanning system.

The principal drawback to the poor signal-to-eose ratio (SYR) of the reconstructed object.-
because of bias builtup in the recording process. Two -ethods for Improving reconstruction
SK are discussed to this paper: (1) maximizing the contrast of each fringe or sone-plate
pattern exposing the hologram. and (2) recording intermediate holograme of portions of the
object, which are then reponstructed for use in recording a final hologram of higher signal-

" to-bias ratio.

Introduction

One method for computer hologram generation to illustrated in Fit. 1. A fixed point-
source reference continuously Illuminates the holographic plate while a second, mutually
coherent point source scans out the desired object distribution under computer control. for
each and every pont" oo the."object." the photographic emulsion is Illuminated by a zone
plate of specific center coordinates and focal distance, appropriate to reproduce that point
upon reconstruction. The final hologram consists of the time-lntegrated sum of all
contributing zon* plates. Production of such a hologram was first reported in 168 by
Caulfield, Liu. and Harris Ill.

t / / recording :

scanned/modulated a eodum
Point source

fixed
reference source

Figure 1. Time-intograteo method of recording "object" described by sconning point.

The limitations of such a hologram are well known. ecauso each zone plate exposure
carries with it its own bias, the contrast of the hologram Is extremely low for any
resonable number of object points, the diffraction efficiency of the hologram is low and,
of more serious consequence, the reconstructed object may be dim compared to the light
scattered by film grain and other scatterer. in the optical system. As a result, the

Ssignal-to-noise ratio (SRI) of the rcoCnstruction will be low.

Two methods of Improving the SRI of the final reconstruction are discussed in this
paper. One method optiaizes each contributing zone plate to assure optimum overall

. diffraction efficiency. The other method, mor. compitcated than the first. uses a two- or
multi-step recording process to further Improve the signal-to-bias ratio and, thereby, the
reconstruction SER of the final hologram. The second method is complementary to a method
described by Caulfield elsewhere In this proceedings, in the sense that Caulfield's scheme
works best fo& object plane holograms, whereas this scheme works best for Fourier transform
holograms. ,

7 ... . .



Analysis Of the gasic Fre-ble.

Bform discussing the two methods* let Ue be sure that the mature of the baste Problem
to clear. For Convenience we specialtse to a tourist transform hologram format. as
eulgetd by fig. 2. The esme .a tea of the general preset hologram case are mow

Lim sta fringe patterns. If the fringe pattern associated with only a single object
point is recorded, the contrast Of the reultant exposure can be quite high. If N such
fringe patterns are superposed. however, each carrying Its own bias. tha contrast or signal-
to-bias ratio of the total exposure pattern will be low. It the N-exposure hologram io
reconetructed, there will be a bright spot on ents and N dim reconstructed object potato to
abackground of scattered light (noise). The noise level ts esablished by Cho average
transmittance lovil of the hologram; in the low contrast case of concern It Is io
esentially Independent of the signal level. Thus, the SNI of the fimal reconstruction is
proportionlal to the aigmal-to-bias ratio of the hologrlm recording. Im analogy with
Incoherent holography, this decrease* roughly as aiN where N is the number of object
poitst (21.

(Partial) Obi. fD intermdiate

Ref. -))j hologram

partial
objectI, aerture

Intermediate
hologram

zero order
attenuator

figure 2. Two-step process for improving SHR of time-integrationa
(incoheren.) holography. Multiple intermediats holograms are made of
portions of the object and re-recorded with reduced bias on a final

Mlethod it Optimize fringe Visibility

The first method for improving reconstruction SKI Is to saure that &at-% fringe
pattern, asoitd with each object point, carris with it no more bias th.e is necessary.

This atUS po:ssi:ble if the reference wave at the photographic plate remains constant in
aeplItudte. However, it the reference wave maintains the saem amplitude as the object waes
the fringes will have full contrast, or unit visitlity. an order for the fringe amplitude
to be correct, it Is necessary that the object aned reference wave have magnitude*
proportional to the square root of the desiredl fringe amplitude. Equations (I) end (2)
point up the differencee. In these equations, W a demotes the complex wavs amplitude
associated with the nth object point exposure, ?(x) the corresponding Intensity, end A(x)
the Integrated asposurs distribution. For the constant reference amplitude tae we have

% -Z I + 0nezpdwnlI. (Ia)

.~~ a...
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3(x) - F 2(a)

- ocal ls. + n-I ,140la n

vhare Kis th reeece wave smpltudeantd 0 (x) (. IC leplJIP ) the amplitude of the wave
fro the nth object point. The tars wihi pireteei the set equation represents the
b bias, whe reas the final term represets the diffracting "signal" structure. for the equal
object &ad reference amplitude case, the corresponding distributions are as follows:

142) r + ra eipli(w 36) (a
ft ft ft f

I ix) 21 9 1 UI + cao a + On') ONb

)2 L 94LI + 2 10 ~loo(Wa+0 a1.

In this case both the object antd reference waves havc magnitudes equal to the square root of
0,wth the phase On being carried by one of the waves.+ Comparing Eqe. (1c) and (2c) we see

tRat the diffracting signal distributions are proportional to one another. However, in the
equal object and reference amplitude case, since each contributing fringe pattern has unit
visibility. the bias contribution to the composite exposure distribution is the absolute
minimum poasible.

In a 1964 paper by Kozuo and Hassey (3), It is estimated that approximately 70.000 unit
visibility f-logs pstterns can be recorded on Kodak type 6491 photographic plates to achieve
a reconstruction SYR of 1:1. For o SKI of S0:1. it is necessary to reduce the number of
fringe patterns (end, hence, the number of object points) by the square root of 30, Thuse
only about 10,000 objact points, corresponding to a 100:100 array, can contribute to a time-
iategration or Incoherent hologram on 649F places if a reconstruction SKI of 50:1
(approximately television quality) Is desired. This nuaber is too small for virtually all-
applications of Interest, and something more must be done to impxov3 the situation.

Method 2: Multi-step Procedure

The method ws propose for achieving greater Improvement In SRI Is Illustrated in fig.

* 3. A two-step process io shown. The key steps of the method are as follows:

1. The N object points are divided ir.to M groups of NI'N poitst each (the points may be
contiguous, or they msy be chosen to satiefy statistical objectives).

2. Intermediate incohererut (time-integration) Fourier transform holograms are recorded of
these groups of object points, on the sane point-by-polnt basis as before. These X
intermediate holograms will hav* better signal-to-bias ratios and, hence, better
reconstruction SNI's than would be the case were all N fringe patterns intergrated in e

3. The N groups of object points are reconstructed from the IN intermediate holograms and
their Fourier teansforms re-recorded in multiple exposure fashion on a single final
hologram plate. The reference wave for each of the multiple exposures is optimized for
aximum diffraction efficiency.

Since the SNE of tech Intermediate hologram reconstruction is baiter than if all N
fringe patterns had been recorded initially on a single plate, the SMI, of the final
Composite hologram is also improved. Now much improvement can be achieved is analyzed in
the next section. The basic process is, of course, relatively cumbersome, Furtheri unless

6o-.9



the multiple exposure* preoduil8 the flal hologram are made carefully. reciprocity failure
may lead to unequal reconetrurtioe efficena¢es for the contributing hologram dietributions
(651. (This vill be true of both the Intermediate holograms &ad the fimaL hologram.) We
sote, however, that the Ge of thermoplastic recording materials in place of film say

elilmeate both problems.

SNA Analysis

Is a preliminary emaeemoet of possible improvement in SUR of the final reconstruction.
we go through a siaple calculation. To siaplify the analysts as such as possible we sake
the following assumptions$

1. The recording processing Is such that, over the exposure range of concern. the
resultant wave amplitude transmittance of the hologram equals the (normalised)
exposure; i.e., t(z) - t(K).

2. All fringe patterns contributing to the Intermediate M holograms have unit visibility.

3. The bias amplitude transmittance for both Intermediate and final Lolograus ie 0.S. -

(This is -not necessarily optimum for exposures of this kind, but is a reasonable
starting point based on studies for conventional holography (61.)

4. The object points have equal Intensity.

None Pf those conditions is essential to the achievement of improved SNI, but the enalysis
is greatly simplified by them.

Let L be the number of object points contributing to each of the N Intermediate
holoSrass. L t chosen such that a reasonable SUR can be achieved on reconstructioa of each
intermediate hologram. The nth intermediate hologram has amplitude transmittance of the -

form

a -0 1-

i

its) - (1/21) [ (14•oo,,tuzl 01i) +n Ix() ).-.

In/ + (1/21.) I costs Z ++34n(X)

vhere a (W) accounts for the grat noise. This hologram Is placed in the input plane of the
cohera? spatiel filtering system of Pig. 3(b). vhich ettenuates the sero order and blocks
all other light outside the mth partial otjocL region. The resultant wave amplitude
incident on the final hologrnphic plate is

a .40()- (/L -..~~wz40) ~() 4

where n'_(x) represents the fraction of the grain noise specific to the ,th partial object
regIon. The zero order is attenuated such that

A - (/-&°

a choice that equalizes the exposure bias contributions produced by the reference and object
waves (Zgnoring noise, this choice optimiesa the signal-to-bias ratio of the exposure.). The
resultant intensity ts of the for.

5 ix) - ( (Oux)I
IM -u aW

L

- (1/gLI * (l/IL)ST oalz * 4J + 1l/4)} a(z) + O.T. (5)

(L/4Vn (i) + O.T.

tm this equation. OT. Includes other terms (including the conjugate of the no:o tote) that

do not contribute to the final composite object reconstruction.

Choosing a exposure period of

.- 40- o
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yields exposer@

'A..

*w * idi (/11Ioos *. Vzl +~m *.T.(S

Let the total number of Intermediate brlograms, N, be Wavn by

Then the son of the N multiple ecp*6"v~d On the final holographic Plate io given by

3 s 1*E) (7)
tot 1x

-'By assumption I above, this equals the amplitude traesittasce of %he final hologram; I.e.,

(1/2l1  ) + [i n- (/=) J castiw (M)* 0 (U)(B

* .() z n (a) + 0.?..

vhere a (z) Is the noisa produced by film train in the final hologram and 0.?. again denotes
termste reconstruct outside the oblject region. Inspection of Eq. (B) shows that this
final hologram produces an object cosiatiog of

IN L LIS

points, each of which Is reconstructed pith the same diffraction efficiency as Is obtained
with the intermediate holograms. Each partial object, consisting of I. points, is
reconstructed with Its ovn associated noise. In addition, there is the overall graionmoise
contribution from the final hologram. Since the two noise processes ae indejpeadentt they
add on an intensity tesis, and we aspect the noise intensity Is the final reconstruction to
be greater by a factor of two compared to the intermadiate reconstruction*.

By wsy of Illustration, assume that L. - 10.000. As noted earlier. this corresponds to
a reconstruction SUR of 50:1 with 649F plates. The total number of object points that can
be reconstructed by the final hologram is then limited to about UI

corresponding to a 1000s1000 array of points, a respectable number. The SUR of the final
reconstruction predicted by this simplified aalysis would be 25.1.

Concluding Remarks

Although the model used above in highly simplified, the noin conclusion should be
generally valid: significantly improved SUR is obtainable using the two-step process. The
follovw.ng additional points apply:

1. Although considered in terms of a point-by-point time Integration to produce
Intermediate holograms, the same principles apply to standard Incoherent holograms
also. The key point: record omly parts of the Object at a time on Intermediate
holograms.

*2. Many of the problems with photographic film--grain soise, lack of real-time operation.
reciptoci~y failure--are eliminated If thermoplastic holographic recording material Is
used. Other. unexpected problems may arise, however.

3. The analysis above io specific to the Fourier transform hologram, but extends to thg
more general 3-0 object case.

4. The apparent success of the two-step method suggests that Incoherent or tie-
istegration holograma of even larger numbers of object points may be possible vttt,
e.g., threetage methods. This proposal is subject to study.
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S. t hold be meted that the partial rocordiag technique proposed allows for some
reductiom io the spatial friquescy baodwidth required of the holographic recordinl

Medium. since the object-object tmtertetaece terms produce exposure distributions of
smaller than seacal bandvidth.

Z 6. Applicatioms extend beyond display holography to time-L gratiom Image processing aed
other signal processing appications.

ThLs york we supported by the U.S. Army Research Office uMder the Joist Servicee
Electronice Program.
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Abstract

A noV generation of opto-eltctronic s1n0l processors, many eXploLting acousto-optic
technology, has been developing during the post several years. These processors are
dsetgned to perform algsehric operations like matrix-vector nd matrix-aetrix
multiplication. A number of major architectures are reviewed, including some that operate
using digital arithmetic. fundamental Litmitattons are discussed

1. Introduction

The acousto-otic (AO) Bragg cell is regulary used now to perform signal convolution,
correlation, and spectrum analysis. During the past several years. a now class of
applications based on such algebraically-oriented operations as matrix-vector and matrix-
matrix multiplication has been developed for this versatile device. The work is exciting
because the processors under development appear to present significant compePition to
alternative all-electronL (e.g., VLSI) Implementations They are fast. can Operate on low
pover budgets, and, in certain cases at least, cam provide the high digital accuracy
required of some of the more demanding algebraic signal processing applications.

This paper reviews and assesses the basic AO algebraic processor architectures that
have been proposed *Lce the inceptioe of these new developments in 1901. Numerous
individuals at different institptions have contributed to the research effort; A partial
list of references is included; more extensive references will be included In a subsequent
paper based on this one.

Section 2 begins with a discussion of the basic properties of Bragg cello that have
been exploited in these processors. That is folloved by brief comments on the wide range of
higher-level algebraic processing operations that can be rerformed by matrix-vector sad
matrix-matrix multipliers when combined with appropriate data handillg circuitry. The
remainder of the paper discusses specific architectures, which use both single- and multt-
transducer AD cells, for analog and digital accuracy matrix-vector and matrix-matrix
multiplication.

2. Important Operating Characteristics of Acousto-Optic Cells

Two major characteristics of Bragg cells have been exploited to proposed AD algebraic
processors: the capability of modulating the intensity of a beau of light and the
capability of deflecting a beam of light to different directions.

With an AO modulator, illtstrated to Fig. I(s). the Intensity of the diffracted beam is
given by the intensity of the incident beau class the diffraction efficiency of the acoustic
grating traversing the cell. Electronic circuits can be designed such that this diffraction
efficiency is proportional to the amplitude of the signal that is input to the call driver.

An AS beam de.lector, illustrated io PI. 1(b), operates on the principle that the
angle of diffraction of the output beau io proportional (in the small-male regime) to the
temporal requency of the acoustic weve in the cell. One can thus choose the direction
taken by the diffracted beam by choosing the frequency of the drivinq signal. Depending oa

cell type, the frequency is typically to the 20 MHs - 2 Gra range. As suggested to yig.
1(b). if U einuooidal signals of different frequencies are aimultaneously input to the cell,
I diffracted beams result, each propagating in its own direction. By changing the
amplitudes of the different sinusoide, one can control the amont of lihtOsemt in the

different direc.ioae.

Acouste-optic algebraic processors operate with multiple Ieput and output beams, as
showm in Fig. 2. Each input beam is modulated, deflected, or both, by gratiog segments in
differeat tegins of the BrSag cell. The intensities of the input beams, produced by LED's
or laser diodes, generally vary with time. Pigure 2(a) shows a multi-channel bean
modl4ator. in this case, the Bragg cell is imaged onto an array of detecters such that each
modulated beam Illuminate# a different detector. The imsing system Is of the Sehiivres
type: a stop Is the beck focal plane block* all light not diffracte4 by the acoustic

LIM.....
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Stpatina selmeat . Vigurs 2(b) show@ a mul, -chaooel beom deflecto,. where light fros a
gives Input beam tee be seat simultaneously to &my subret of the detectors Is the back focal
plast of the lens. Further. the deflected bease can each be coatrolled t tatesetty. The
ecousto-optic devicee can be thought of as providtag a weighted swttchiag network that

co.ects impute to K octpuce olth variable eflghts. to the boea modlacor cafe. X equals
9 &nd the comaection are one to-one. 10 the beam deflector case, N cm differ from V. and

the cooesctione are ose-to-onay. In both case,. proceeseis architectures exploit the

pipeline movement of ecouetic gratlag aesomeLe from ae boa peltion to the next.

It to importast that The tuedaeetal limitations of £4 cell operatico be understood to

order to deternse the limitatione of the cells Is Specific algebraic preceeing
configurstions. Consider the beam Modulator case first. With reference to Ptg. 3. let each

Input been illumatee a $egest of acoustic WAve "signal" of teeporl Jaration AT (equal to

the width of the boom divided by the acoustic wave velocity). to order for the intemsity of

each boea to be modulated ludepeadently. it Is soecesary that AT setisfy the condition

AT ) 18/,

share I is the temporal frequemcy bsedwidth of the cell. Uf the acoustic wave tramaLt time
for the entire cell I o secoOdl, then the maximns muber of lnputs and output*, W, is

restricted by

S- TILT (T m.

whcre TI is the tine-bamdwtdth product of the cell. Typically this &umber lies betweem 200
and 2000. In practice, the number of titercOnaects will probably be significantly lower
than that--parhaps botweao 50 and 200.

Fundamental limitattons on the bea deflector approach -e established with reference

to 71j. 4. in fig. 4(a) it is assumed that there is one upl bee*. (The coufigurattos
ahovn In essentially that of an AO spectrun analyzer.) Light from this beas can be
directed, in parallel and with individually controlled wcighting. to any combinattoe of K

outputs, where N ( TB, the tlne-bandwidth product of the cell. If X exceeds TIS, the amount
of light seat to eact detector aecot be controlled imdepeo4tntly (cross talk results). In
Fig. 4(b). there are two Input beans. Becauee only half the cell Is used for a gives lput
beam, the number of resolved output detectors must be reduced by a factor of two. I
general, as shove in Pig. 4(c), K inputs can be coupled to no sore then TI/N outputs If the
coeuctLon weight. are to be Imdapfomadt.

Characteristics and fundamental limitatione for the two modes of operation are
summariad In Tabli I. In the table both the maximum number of point-to-point counectioes
s%4 the maxliun number of inputs and outputs have been entered.. Two tSignficant differencee
stand out. first, as ated before, the bean deflector node allows for oae-to-nay
titerconnacto--essentially global t nature--whereas the been modulator mode allowa only for
one-to-one or local, Interconnects. On the other hand, the number of Inputs and outputr
both equal TI for the bean sodulatoc cate. whereas for the bean deflectcr case the product
of the aumbqr nf Inputs with the number of outputs is ltaited to TI.

" , Table I. Summary of Characteristics

Itectonnect one-to-one oe--tonMaoy
Type (Local) (Global) - -

Nuuber of
Possible ( TI ( T.

* Point-to-point
Commections

Number of V Inputs N Inputs
inputa and X Outputs N Outputs
Getuts U( TI NO TB

A further practically Important d!fteoce bstweeen the two modes of opsrtttom should
be noted. In the beas modulation node of operation relatively high diffraction efficiencies
can be achieved without noallearitlee (which ate inherent in the acousto-optic dWffracttum
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proCeas) ce~plteatig mattere too such. |owevor. Is the boom deflector sode of operation,
it is quite dtifficelt to comtrol iadivtdually the intesities of the ditffto.t diffracted
boaes If hldh diffractloa efficieacy to desired: moslimeer couplies cad honooc componet-s

to the gratis$ troaooittasce distribution Intreduce toe much croostalk. Thus. to sigal.

processing applicatiefts. selti-frequeucy boas deflector device. sat be used at low
ilteraLti)u effitciecto. wish a subsequent Weste of input light.

S. Important Alobrlc Processing Operatieos

A momber of algebraic, matrix-srieted operatioms are important to modern eligal

processing applicationa such as costrol. pottern recogniti.o. adaptive beas formimg,
directioo fiadlng. aed spectral analysis. Particularly Important operations include matrix-

vector sultipllcatlos. satri-uetrix multiplication. Cram Sckidt orthogonalLestLou.
solution of aets of linear eqeatioms. detereimatio of elseovectors mad sigenvaluca of

ttri .s uar velum eoPoti. of matrices. ad least squares estimates of soluttoms
of sets o linear equatines. Of the, the first two--metrix-vector and matriz-matris
multtpltcatito--aoe the most basic, nde in fact, they often form as imtegral part of the
other operations. Thus, there bs beeu considerable emphasis within the optics community on
developing accurate, hikopeod, voroatile procesooros spcific to those two taseks. A
subsequent (*ad often soatrivial) Cook ti to determine how such processors cam be bact - - -

conflU ed in larger systems to perform the higher order algebraic operatioas meted. 1K the
following secttoe we discms a variety of specific AO processor architectures for
perforuLng the two basic matriz-vector ad ustrix-matri product operatiome.

4. Siaa|o-Trameducer Architectures

Ve basim with processors that usee sigle-traneducer AO cells, cosdeortg first a
atcriz-voctor aultiplior. For refeeoce ve note that the componeats af a matriz-vector
product have the for* suggested by the 33 example of Eq. (1):

,l ~ ~ ~y a',", ,] ,.,,,, a +,., al-
71i *211 +i 1 i ly a a2 22 a 23 a3

-"a 2 1 8a 2 3 I:22:,1 where y i -a 2 lu1 *a 22 x *23z3 (1)

Y3  a 31 2 " J a, y" a,,x + *a a+ a33:"

The first lepleaentattom described to based on the beas modulator sode of operation.
Figure 5(a) shows a system configured for the oultplicathe of a 2-compoaemt vector by a
2z2 matrix. This configuratios was suggested by Taura (II t response to an serlnr scheme
proposed by Caulfied aend Rhodes 121. The processor consists of as input laser diode (LD)
array, a collimatiom loss for each source, as acousto-optic cell, a Schlterem Imaging
system, &Cd a linear array of lotcratia detectors.

The first Input to the scoueto-optic cell, vector component z 1 , produces a eh~rt "

dIffractioo grating with diffraction efficiency proportional to a that moves across the
cell. When that grating segment to is front of LD fl, as shove ti Fla. 5(b), the laser
diode to pulsed with light esergy proportiosel to matrix coefficiest a . aed integrating
detector El Is illuucaoted with light energy il proportie to the prod&At an x The ne"
ccitical meast occurs when the xl gratieg sesest Is in froat of LD 02 end A losed grating
segient, with diffrection arftceAcy is proportion to vector coepoent x , has moved in
frost of Le 01, as shows Is fig. 5(c). At that moesent LD #1 s puleed wth 1liht e2erty i.
proportios to a:: nd 3LD 92 is pulsed with light energy io propoertiom to a . Tha
tntesrlated output of detector 0l to now proportional to as a  a , vhili Is the output
vector compon a "ty. The integrated output of detector st"aA ag13 it this stage. The
final critical aomla is the computation, shown In Fli. 5(d), ofluos after gratig segment

x : hs soved i trost of 1. 92. A final pulio from that laser diode, to proportion to 2 2 ,
yields at the output of detector 92 a voltage is proportion to a 1 + a x2 2 , the aecoad
componant Y2 of the output vactor. The computation is now couplIts. 21.

The evaluation of a satrix-vactor product by this pRoceseor takes T sec (the A0 cell
tine window) befor* the first y1 cosae out. (T ti thus t'e. latency of the processor.) It
tahes another T s0€ to complete the entire matrix-vector product, yielding a total of 2T
process tin T ... ber of operations (,ultiply/adde) that can be performed ta
ta t i whT u ( . Thus, the theoretical limit gs oroceslog rate is liven by

Processing lete ( a2T12 operatlea/ose,

Which . eluates to .X.. .. ope s/c assuming A 1 Ha.s bandwidth cO With a 10 useC tie
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Opeatieoe of the preceesor to easily extended to qatrix-natrix multiplication if it la
oted that a saarix-mattxi product can be evaluated as a succossion of acrtix-vector

plodeetl. Thus. matrtx-miattil product C * £3. given L the 393 case by

a2 b2 "2 Ib2 1 b2  b23 I - 12 2  02 (2)

31 a32 a 33J lb 31 b32 b 3 J 131 C 033

cam be written an

Akn ki 3 1 - 1 £2 S!. (3)

b 1~ ~ 2 ~ z [i Sec. (4)
Lb'' b 32

(,'PjlarS* Matrices the latency can be ig.rud, and the process.ing rate to essntially

3 /2) operations per second.

It should be stressed that this processor--and the other processors discussed In this
paper--operates with light Iotenaltiees which ae alvays eoneatle. Thu., if bipolar or
complex-valued vectors aud matrices are to be multiplied, multiplexiug or coding schemes
meat be emplnyed. A variety of methods have bees proposed; all result t *as reduction In
system throughput (typically a factor of two or three) and am Increase tn system complexity.

plure 6 illustrates a system, proposed by Csaecant et al. 131, that expletts both
acoucto-optic modulation and beas deflection for performing matri-vector and matrt-matrix
multiplication. Inttally all laser diode sources are off while the-ragS call t loaded
with a sequence of composite grating egmeats, each of which cam diffract light from a given
Input beau to any combination of output detectors with arbitrary weighting. When the
composite gratings are t the correct positions, the laser diodes are strobed on with
intensitiue proportional to zI, X2 , etc., as showsa. 6

To work with a concretoe xample, assume that output vector component y il iven by y,
+ 3 x b e sorces are strobed. t5am 1. with Intensity pri,!OrtlaIo:i

ha% 41 tf %ce erlY diffracted to detectr I with diffraction efficiency 3k, k a eh
proportionelity constant. Stiultameously, bean 2 is diffrecte to the name detector with
diffraction efficiency 4k and beam 4 with diffraction efficiency 3k. The result io an
output at detector I proportional to k(3x + 4 I ), i.e., proportl to yI" At the
same time this ia happening, light to SIMI betn diffacted In propel amounts to tha other
detectors to calculate y2 , y3 , etc.

The amoet of time it takes for a single vatrix-vtcter product to be evaluated Is
determined almost entirely bjr the fill time T f 2 r the AO cell (the flash time being
Aegli$jje by comparison). Duting that time, N analog multiply/adds are performed, where N
( (IT) The number of operatloas performed per aecond thus equals the cell bandwidth 5.
Table 2 summarizes the differences between the beam modulator &ad beam deflector approaches.
The numbers assume a graga cell bandwidth g of 100 Nge and a time window T of 10 usae.

icause of the em matrix diuensionality that can be accommodated by the bean
deflector @ystem ((1T) "', as opposed to the dimensionality DT achieved by the beam
Modulator eetem) this system does not took attractive for simple matrix-vector
mutttplicatoa. l owver, when matrt-matrix products are considered, performance
limitations on the twe approaches are somewhat closer.

Natrix-*acria Multiplication usLin this basic architlcture is Illustrated in Fig. 7.
The approach Is philosophically the ese as was discussed before. matrix C. given by
matix-matricx product AS, is calculated vector by vector, se is sq. (3). Ac the Instat

................................. . . •.



depleted is VIt$*. vector t represented by j c 1
Is calculated by flashing &I loser diodes t o *6 !t b.. and .... b o o. .

1/9 aacoas later the grot*n& issuante have moved up to the allt pilitio, Uero so .
cc2 jl ]can be evaluated. sad Go forth. per the matrix-matrix product ovaluetts the-"
:i2.412 see latency (asoumina T to still the trpsit time of the Bctire Uragg cell). T/2
seec addital procese8i time, &ad a total of U multlply/dde porfor1.d, where U <
(12)(b') ''*for as overall procesesin rate of

Processing 6et - (ST)1
/2

-IT"

A typical rote with 5 - 100 MRS. T - 10 ueec is 4zlO Opell8ec. Netrfs-atris multiplication
characteristics for the two basic processor architectures ore also seunrimed In Table 2.
It should be emphasized that these Linitations are theoretical, sed that In practice ocher
considerations may be overriding. As noted eariler, £O deflection of incident beaus into
multiple discrete directione L tpoeible at high diffraction efficiency (sales* the
inherent nonlinear effects art somehow precompesested). and natrin dimensionality to limited
to perhaps 30 or 31 for square matrices. On the other hand, It say be impractical to

iplemant the beam nodulator method with even 100 laser diodes, let *lone the full
complement IT. Thu*. the theoretical advantages of the been modulator method may never be
recalied in practice.

Table 2. Comparison of methods

Matrix-Vector Multiplication Mattie-Ustri multiplication

DIAM MODULATOR METHOD

T sec latency (before first y comes out)
T sec to Couplete computation
V ( IT

I T/2 operstLonse/second a2T/2 operationesecosd

5z
10 

u
o 
op/sec for T - 10 usec, 2 - 100 MaE 5.1010 ape/sec

•AN DIVLECTOR METROD

T see latency
eosestiaj)j no additional processing tiesDsT)"" '
• 8peratil~ms/oCdQ4 (ST) IST operaslsec

10 upslsec for T - 10 seoc, a 100 HIS 410' epa/se c

5. Multi-Transducer Architectures

Thus far all syctems described have usd AO cells with sinle traoeducers--i.e., only a
single acoustic boea to present for &cousto-optic interaction. Some of the most recent
developmente in AO signal processin have base based on muItt-traedecer cell etchitecrures.
Nigh-quality A cells have been fabricated with as meny a 100 traaadweers, each productn&
Its ova Isolated acoustic beas, ed cells with transducers In the 10 to 30 range can now be
fabricated on a regular basis.

As a first esmmple of a multi-transducer ireg cell architecture, ue consider ntrix-
matrix multiplication using AO beam modulation methods. Fiure $(a) shove a system
consisting o! two three-trasoducer £O cells. tmaged with Schlieren optics onto one another
and, subsequently, oato a 3x3 atray of detectors. Illumination is spatilly uniforn sed
pulsed in time. Because of the Scblleren isaing optics, only light diffra cte by boll. AO
calls arrives in the detector pleas. Thue, it row transducer I and column trasducer 2 are
the only two to receive signals, only detector (1,2) will be illuminated.

por matrtzuatrtz multiplication the components of the Input matrices are sequenced

into the teo orthogonal cells as suggested by FLA. 8(b). The coefficients ac4 mrs input
hortonislly, :a ttt than a and a , and eo forth. simulteneously, twhdcoeffictents
h ate input ertical ci trnllucere, b first, then b2 nd b . etc. AS they
one, the grating @seents repreenting those numBrs effectivelyacrrnoss . another in
space, cauesn light to be diffracted to detectors to corresponding spatial locations. The

.............



first sigmif least %*est Oscar@ whom gtetiog 9emeto bil ln ,a e iased etsi sach
*the. Atthat taggams. the cemoes soure is pulse:d, al lIsh laey In proportion to the

producget a to is @out to integrating detestor (1,L). A short time Later, after movement
of the ggii eeesto through sea beas width, light intensity to proerties to the Product

a1b1 Secn to the es etector. &ad so forth, until the entire entire aum k(a Is +
:12b~ .1 to . peparteadlto ell. has been Integraed. Siarli! 11
0110 a etetor. obcparialGum ae beias evaluated to calculate output

matrix eotetcato c,. c 3 . c *etc. AD bGefore all numbers suet be nonnegativwe, *nd
coding or mltiplasInI7'asl be lied to imploeet bipolar or complex arithmetic.

A second example a nulti-ttsducet architecture is the optical outer product
callter. Illustrated schematically In fig. 9 14,S]. Tn this cage. the individual found
col sn in the multi-transducer £0 cell age short, serving essentially as point modulators

,!oalight pgigthrough then. Light feos the vertical laser diode array is spread out and
recollected by optics not shown so as to Illuminate a square array of detectors to the

*output plan*. The Intensity at each horinoatal row to controlled by a given LD source; the
intensity at each columa of the output array Is controlled by a given AO sound wave. By
3uch anarchitectur, it ts possible to calculate outer products, i~e. matrix-matrix
pr od of t Che type

[s1J.111X~ 22 '23[n~

L X3 '1 Z32z 3

Such a calculation ise integral to the celculation of covariamee atrices--of greatL
importeace in signal propeging--and, an suggested by Eq. (6), a succession of outer
products can be uood to calculate arbitrary atrix-matrix products as wells

a1 a1 2 a2 3  Is I b 1 2 b:3  Ic 1 c12 c13

1 22 a 3 b21 b22 b 3
1  1 Mci 2 c23

'33 b3 l b2 b 3 C I3
a31 a3 32  2 3 31 c32

[111b~tbI2 
131 

121 b2  
b 2

jb 1 1 ~ ~ 2 b231 b1 3  [3 2 (b 1 b3 l blb 3

Am scoumto-optic device to not required for this operation-only some hind of multi-
transducer linear array modulator. towever, AG cello appear to be attractive candidses for
such a task.

6. Digital Accuracy Matrix-Vector Multiplication

The processors described above have dynamic range sad accuracy determined by the
sources, modulator, and detectors. Output accuracy ie limited to eight to ten bite, often
Inadequate for demanding algebraic signal processing tasks. Several methods for performing
algebraic arithmetic optically with digital accuracy have bees described by Cuilfoyle (61.
Athol*. Collins. and Stilwell (7). ad by 'locker. Clayton, sad Bromley [S1. Soe of thin
underlyieg concepts are discussed In this section.

The following point& can be considered key to proposed impleaentatios

1. Digital multiplication can be performed by seae of discrete convolution (mortal
product) (9).

2. Discrete convolution can be implemented In terms of a atrix-vector product 1101.

L.. Pertitioning. io combination with discrete couvolutton vie matrix-vector
6ultiplication, allows matrix-vector (sad, for that netter, matrix-matrix) products to be



calculated with digital accuracy.

* blat I--digitsl sultiplicatioo by discrete coovolutiom--is demonstrated by em example.
Asess the two (decimal) **abaea 39 ad 15 et to be multiplied. to obtain the result 583.
Although any base can be used for the digital rOPresastation, we we* bass-2. The base-2
Multiplicatloa has the form

1 I0a I 1 (13)

1 0 01 0 0 1 0 0 1 (565)

The intermediate number. 111223321. represents the final result in mixed binary formt each
* ~digit represents the weight of 2 raised to that power; the weights, however, are o

restricted to be 0 or 1. The bottom line of the calculation. 1001001001, is the standard
binary form for the resultant product 585. Now note that the mixed binary result can bw

*obtained by convolving the two sequences of I's ad O's representing the Inputs;
specifically,

0I 0 0 t 1 11601 1 1 0) 0 1 1 2 2 3 3 2 1).()

To calculate the discrete convolution. the two sequencea are entered in the appropriete
locations of a vector-matrix product calculation. in particular. it is easily showe that
the matrix-vector product

a 1  0 0 b, a

a 2  a 1  0 Ib 2 C2

a3  a2  at I3J c3

0 '32

results in the same sequence of numbers, lct C2 c 3 c6 4CS) (the composents of the output
vector) as does the sorial produc t

lat a2 a3)e(bI b 2 Y3  1 ~ 2  . c4 c.)

-All this to perhaps not too surprising when It is noted that the basic operations of both
atria-matrix multiplication and discrete convolution are multiplication and stmming. The
otation performed ie not truly digital, In that the mixed binary output quantities sa
analog. Uowever, foe a reasonable number of bite, perhaps up to 32, the dynamic range of

* the output tan be well within the capabilities of the opto-electronic components being used.

if a matrix-vector (or matriz-matrix) product Is to be evaluated ueing the digital
accuracy by convolutioa techniqise. It to necessary to incorporate th% Individual matrix-
vector products (the sorial pcoduLt calculations) Into a larger ustrix-vector product by
partitioning. This Is Illustrated In Fig. 10, where the case of a 2s2 matrix sultiplYOSg a
2-component vector is considered, Ech component is assumed to be given by a 3-decimal
representation on input, yielding five decimals on output. The corespondence between
locations of the matrix components and the sub matries* representing them Is indicated.
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BEAM MODULATOR MODE BEAN DEFLECTOR MODE

(0) (b)

Figure 1. Beam modulation (a) and beam deflection (b) using an cousto-optic
Bragg cell,

MULTI-CHANNEL BEAM MODULATOR •ULTI-CHANNEL BEAM DEFLECTOR

(a) (b)

Figure 2. Multi-channel beam modulation and deflection. Schileren stop in (a)
Prevents undiffracted light from reaching Image plane.
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Eahsgalpce

must have duration

I AT Z 1A3
to be Independent

Figure 3. Limitations on beam modultator case: nuumber of Independent addressing
beam limited to T/ T.

:1TB resolved

C Input { iO/t2t
Mb Inputs

Figure 4. Beam deflector case: M Inputs can be connected to no more than
TB/N outputs.

Figure 5. Bean modulator based matrix-vector multiplier: (a) general system,
(b irst critical moment In operation ((c) and (d) next Page).



A CUT-PI INERTN

a) S MOULTO ETCTR

CLOCK

Figure 5, cont. WC and (d) show additional critical moments In system operation.

*Y2
ZI (a

X2 (a 12 .a 2 2 ..a1 2 )

* Figure 6. Beom deflector-based matrix-vector multiplier. Matrix coeff icients oti are
frequency multiplexed on composite grating segments. Loser diode
intensities are strobed In proportion to vector components xk.

Figure 7. Modification of system of Fig. 6 for matrix-matrix muliplication, The
laser diodes are strobed sequentially with different column vectors of
matrix ~



integrating

Figure 8. Multi-transducer, two-cell system for matrix-matrix Product calculation.

S.

Sec, fr /ShI l

(b) Imming i lnnadOJaI

etc.

Figure 9 (above). System for Calculating the I.£
outer Product of two vectors. Not
Shown are optics for spreading and
collecting light rays.

Figure 10 f(rih), Example of Partitioning F
fr diital matrix-vector multi-**

PlIcation, Each component of** *
original Wx matrIx Is exoanded......
Into a 3x5 mrirx, with similar....
expansions for vector components. ***
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OPTCAL1 COMPUTING:
THE COMING REVOLUTION
IN OPTICAL SIGNAL
PROCESSING7
Development is progressing toward a new generation of optical
computational devices th.1t may provide for ultra-high-speed
matrix algebra and for the density of interconnections needed in
optical supercomputers.

By H. John Caulfield, John A. Neff, and
William T. Rhodes

(5O0BOIis arctteciAoI contued as 0 WS1O0c.OfTO
procssor. The orchffecture provIdes a hih-speed
fman of motr*"vctor mmlpoaatar wino the dgff

*nutkocaIar via analg cwaron olgodlm This
to0g~qlv and a $ysodic 00mito-opt Mv~rolementta

pefnl fte speed df opts to be coritind Wfth the
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Optical signal processing haa its roots in the During the past several years attention has
nineteenth century work of Lord Rayleigh, Huy- turned to a different application of optics to
Sens, Abbe, Lipmann, and others, and its greatest mathematical operatious, in this case operations
promise in the twenty-first century. Here in the that are numerical, sometimes discrete, and often
late twentieth century, a amnall number of optical a'gebraic in nature. Indeed, the redirection of
processing systems (spectrum analyzers, syn- attention has been so vigorous that many view it
thetic-aperture radar processors, ambiguity func- as a small revolution in optics: optical signal
tion generators, etc.) have already supplanted processing is beginning to encompass what many
their electronic counterparts, and others may feel is aptly described as optical computing,
succeed soon (pattern recogrition, direction find- where the teran is fully intended to imply close
inz, etc.). The advantages of optics over electron- comparison with the operations performed by
ics in these systems include some combination of scientific digital computers. The optical-array

• ! lower cost, reduced size, lower power consump processor, mentioned earlier, forms the basis for
tion, higher speed, and potentially enhanced reli- this revolution. (The term optical computing has
ability. been used occasionally for nearly two decades

Although it is not yet realistic to plan for a now in connection with analog optical processors.
general-purpose optical computer, it is possible to but a major fraction of the optical signal-proces-.
think seriously about fairly general optkal-array ing community has never felt comfortable with it
processors, as suggested by Fig. 1, that can be because of the implied comparison with general-
used. as adjuncts to digital computers for perfcrm- purpose digital computers. That situation is
ing specific algebraic computations at very high poised for change.)
speeds. Designs are currently under considers- In retrospect, the beginning of modern optical-
tion for ultra-high-speed optical processors to array processors was the invention of what is now
evaluate polynomials, matrix-vector products, often called the Stanford optical matrix-vector
matrix-matrix products, and solutions of sets of multiplier (ONMVM). This device, illustrated in
linear equations. Fig. 2, has a capability of multiplying a 100-

This article reviews the developments of the component vector by a 100 x 100 matrix in
last several decades that led to this position, roughly 20 ns. Components of the input vector x
describes briefly some important areas of current are input via a linear array of LEDs or laser
research and development, and lists several areas diodes. The light from each source is spread out
of expected major future development, horizontally by cylindrical lenses, optical fibers,

or planar lightguides to illumnate a two-dimen-
Philosophy and recent developments sional (2-D) mask that represents the matrix A.
Operations performed by optical systems are de- Light from the mask, which has been reduced in
scribed by simple mathematics: convolution, intensity by local variations in the mask trans-
multiplication, integration, etc. It requires only a mittance function, is collected column by column
minor change in outlool: to convert from mathe- and directed to discrete horizontally arrayed de-
ruatics as a description to mathematics as the tectors. The outputs from these detectors repre-
goal of the optics. Such a viev.point was taken by Pent the components of output vector ), where y
Cutrona at the University of Michigan as early is given by the matrix-vector product y - Ax:
as 1955 when he described the application of
optical systems to the evaluation of general su-
perposition integrals and to the multiplication of Y, all ait at X1
a vector by a matrix. Indeed, many of the early Y2 21 a22 aZ, .

researchers of optical signal processing sys-
tems-Gabor, Leith, Cutrona, Kozma, Vander
Lugt, Stroke, Mertz, Lohmann, Rogers, Good. Y o A a , a2V
man-recognized the potential of optical syste.s
for performing a variety of mathematical opera. Since light intensity, which is always nonnega-
tions. These researchers, and many after them, tive, is used to represent the various mathemati-
concentrated primarily on continuous analog op- cal quantities, special coding techniques must be
erations such as integral transformations, and in employed if both positive and negative (or coin-
that sense their contributions relate well to earli- plex-valued) numbers are to be accommodated.
er or concurrent developments in analog electron- As originally conceived, the Stanford OMVM
ic computing. suffers from several potentially serious limitations:
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4 OPTIAL COMPUTING

* Accuracy is Jintited by the accuracy with which racy in the same way electronics does--by going
the source intensities can be controlled and the digital. This led to the first suggestion by Psaltis
output intensities read; of a means to achieve digital optics. Third, the
. Dynamic range is source and/or detector limit- newly emerging field of systolic-array processing
ad; should be amenable to optical implementation.
* Rapid updating of the matrix A requires the This latter suggestion led to work, primarily by
use of a high-quality 2-D read-write trans- Caulfied and Rhodes, on an optical systolic-array
parency-a spatial light modulator (SLM)- procesor, described below. Soon, both published
whose optical transmittance pattern can be and unpublished work by Tamura, Casasent, and
changed rapidly. Unfortunately, such a device others advanced this area greatly.
does not yet exist with all the desired chara etris- Systolic-array processing, developed principal-
tics, although candidate devices are being im- ly by H. T. Kung at Carnegie-Mellon University
proved rapidly. and S. Y. Kung at the University of Southern

Despite these drawbacks, the Stanford develop- California, is an algorithmic and architectural
ment brought about an important swing within approach to overcoming limitations of VLSI elec-
the optical signal-processing community from a tronics in implementing high-speed signal-pro-
preoccupation with coherent, Fourier-transform- cessing operations. Systolic processors are char-
based processors to incoherent, geometrical op- acterized by regular arrays of identical (or nearly
tics-based processors. It is interesting to note that identical) processing cells (facilitating design and
this change in direction was initiated by Prof.
Joseph W. Goodman, whose book on Fourier . .:.-- . .
optics had enshrined coherent optics so firmly in . . .. . •
many minds.

The speed of the OMVM (a result of the optical
parallelism in the system) presented researchers . . , "
with a perplexing problem: the processor could
operate at speeds far exceeding the ability to
input and output data, which often requ~red W
digitization for compatibility with surrounding
electronic systems. One approach to circumvent-
ing this problem is to use the OMVM for iterative
algorithms, where the processor output is direct.
ed in analog form back to the input. A variety of . .....
iterative processing uses of the device were devel- - ........
oped by Casasent, Caulfield, Goodman, and
Rhodes. One example is the implicit inversion of FIGURE I. cV p ro ess (P shown hosted bv 0matrix equation y = Ax (i.e., solution for vector ueutP0 cenfo, rocesng u (CPLO. Two-woy
z, given vector y and matrix A) by the iterative Corn wrotI0 a 6 o0 o0 dto
algorithm (or its continuous-time counterpart)

S I,. (I - A) x + y, I . .- . - -

where I is the identity matrix. .-,-, . ,. .o
The next major development came about

through pressure, gently applied, from a small LEM
number of researchers who were equally at hcme
in both electrcnic and optical computing. particu- - " .
larly Harper Whitehouse and Jeffrey Speiser at
the Naval Ocean Systems Center and P. Denzil " a '
Stilwell at the Naval Research Laboratory. - 'd ,,l' q " ' " '-s":'
Through their persistence they convinced the 1 .... ...-
ptical-processing community of three important ''- -- ' " •'" - -" -
things. First, algebra without high accuracy is PIoURE z. 'ae stonod mot .vctor muIJtMM. NOt
not very useful (see box: "Tne Need for High swn in toi f.e ht-smeowrV o co clvt%
Accuracy"). Second, optics can achieve high accu- optcs
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prbricatiom), piiarily local interconnections be- of a 2-component vector by a 2 x 2 matrix.twen calls (reducing signal-propagation delay The first input to the acousto-optic cell. vector

times), and regular data flows (eliminating syn- component xi, produces a short diffraction grat-chronizatioL problems). ing, with diffraction efficiency proportional to x:.,

Although the motivating f.ctors are different, that moves across the cell. When that grating
systolic-processing algorithmic and architectural segment is in front of LED 1, as shown in Fig.
concepts are also applicable to optical implemen- 3(b), the LED is pulsed with light energy propor-
tation. This is primarily because of the regular tional to matrix coefficient all, and Integrating
data-flow characteristics of optical devices like Detector I is illuminated with light energy in
scousto-op:ic cells and CCD detector arrays, and pruportion to the product ao1 xj. The next crit;cal
because of the ease of implementing regular moment occurs when the x, grating segment is in
interconnect patterns optically, front of LED 2 and a second grating segment,

An example of an optical systolic matrix-vector with diffraction efficiency in proportion to vectormultiplier is show in Fig. 3. The processor component x 2, has moved in front of LED 1, as

consists of an input LED or laser diode array, shown ir Fig. 3(c). At that moment LED I is
collimation lenses for each LED, an ecousto-optic pulsed with light energy in proportion to a,2 and
cell, a Schlieren imaging system, and a linear LED 2, with light energy in proportion to a21. The
array of integrating detectors. The pedagogical integrated output of Detector I is now proportion.
example of Fig. 3 is set up for the multiplication al to alizi + asx2, which is the output vector

component yt; the integrated output of Detector 2
. is a21XI. The final tritical moment in the compu.

- .. tation, shown in Fig. 3(d), occurs after grating
segment X2 has moved in front of LED 2. A final

A . .. -. vtmoo, pulse frond that LED in proportion to a2 yields at
the output of Detector 2 a voltage in proportion to

ft a , 0 ... "2 1", + 02X2, the second component y2 of the
.~L!lI~I If II s-a output vector.

0 Much like the Stanford OMVM, the systolic
"0. " ,. optical processor described has a dynamic range

.. and accuracy determinea by the sources, module.
Q tor, and detectors. Output accuracy is limited to

t ight to ten bite. A realistic processing capability .ir such a system would be the multiplication of a
-106-omponent vector by a 100 x 100 matrix in

approximately 10 ps. This is much slower than
the Stanford processor speed; however, unlike the
latter, the systolic system does not require 2 2-D
SLM, and the matrix can be changed with each
operaon.

.. ' Shortly after the development of the optical
.. .,. .. . systolic matrix-vector multiplier, two important

..-.- v_ ,. :. advances took place--the invention of optical
"-. - - - . matrix-matrix multiplierr(see box: "Matrix-Ma.

trix Multipliers*) by Dias; by Athale, Stilwell,
4 and Collins, by Docker, Bromley, and Caulfield;%

^0%0" .and by Casasent-and the achievement by Guil-
s-, foyle; by Athale, Collins, and Stilwell; and by

4 ." Bocker, of digital accuracy with optical algebraic
~ ,,*-- . -processors.

. , ,One method for obtaining high digital accuracy
using optical processors is to implement digital

" " multiplication by convolution. This method was
OWNS 3. 90W v ftqrvw'x ,,p vif; first brought to the attention of the optical sig-
(a) 8c wgem (b). (c), (d) the Wtom of different nal- processing community by Speiser and WVhite-
stages of operoon (see tet). house and first implemented by Psaltis et al. The

LASER FOCUSIELEC1RO-OP1C 10
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OPTICAL COMPUIIN@

method is explained with the aid of Fig. 4, where
base-2 multiplication of the decimal numbers 39 THE NE WO HIGH ACCURACY
end 15 is performed to obtain the decimal result Computers calculate by the same elemenary
"685. In Ig 4(a) the multiplication is performed operations (addition, subtraction, multipica-

i, Loral fashion: Lines I and 2 contain the tion, division) that humans use. The result of
input binary numbers to be multiplied, ine 3 each calculation has associated with it an uncer-
contains a mixed-binary reprerentation of the tainty o error. Depending on the number, as-
output, and Line 4 containz the output in full der, and nature of the required clculatisn,
binary. In the mixed-binary representation, each these errors can be miltiplied greatly.
digit repesents the multiplier of a power of 2; This is why 32. and even 64-bit accuacy

- however, unlike full binary, the value of the digit computations are sometimes done even when a
* is not restricted to be 0 or 1. One means for u-bit answer will suffice. This is also why ama-
* onverting from mxed binary to full binary is log solutions (electronic or optical) to algebraic
. shown in Fig. 4(b): each digit of the mixed-bina-y problems must often be avoided.

representation (Line 3) is expressed in full binary In electronics, analog computers are used for
form, and these binary numbers, appropriately highpe easily inplemented operations, but
shifted, are added using a standard base-2 adder. digital computers are used for algebra. Not
The resultant binary number, 1001001001, is the surprisingly, optical computation makes the
decimal product 685 expressed in base 2. same division of tasks.

Binary multiplication via convolution is possi-
ble because the intermediate mixed-binary repre- levels be distinguishable at the output. Negtive
sentation can be calculated by discrete convolu- numbers can be handled using 2's complement
tion (or serial product) of the binary input se- arithmetic or other methods.
quences. This is illustrated in Fig. 4(c). Convolu- Tne above method for digital multiplicatioi, by
tion of binary sequences is easily accomplished by convolution can be used in a variety of ways in
acousto-optic convolh-er. Since only l's and O's algebraic optical processors to obtain higher ac-
need to be represented by the acousto-optic cells, curacy, albeit at the cost of kwer processing
cells can be operated at peak diffraction efficiency rates. A digital-accuracy matrix-vector processor
without concern for nonlinear response. Further- conceived by Guilfoyle achieves high procesnkig
more, the output detector is only required to have rates by using multit-ansducer acousto-opti¢
sufficient dynamic range to distinguish between cells. Athale, Collins, and Stilwell have imple-
a small number of light levels. For five-bit in- mented digital-accuracy outer-product matrix-
puts, as in the example considered, the output r.atrix multipsiers using a single pair of acoust- -"- -

levels will range, when qur-ntized, from zero to optic cells.
five. In general, N-bit inputs require that N

Current research and new directions
Efforts undertaken during the next few years will
be in two directions. First, optical matrix comput-

M, I " er systems based on the concepts we have been
w- -eili 1131 describing will be built, tested, improved, and

. applied to new areas. Second, new types of non-
100911 [4-1 |.j matrix optical computers will be developed. We900111 oil -will touch on both of these directions briefly.

""isC III'"
a00o In optical matrix computers the two thrusts are

implementation and extensicn. To date, very
u11 wioimsn1 am little implementation has taken place. Doing this
LOW d mo o M oDOD-- --- will require both time and money; it now appears

1 " that these will be provided. Practical issues of
-. b. e. component selection, electronics, and system in-

-tegration must and will be faced. However, the
design of practical optical matrix processors still

7Fl4rI 4. Dogco muvth.ic b conv~oi : needs new ideas. Complex operations must be
Jo (a W ,lcsn of bfotr numrns: (b Convenion planned, e.g., Kalman filtering. Kalman filtering
from rntvo to to bnorv. (el Corwnivo of nrot is a means for obtaining the statistically best
sequences to obtain mted bwnory Inlem e ote tasu. estimate of the current and future state of a
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process governed by 3 known differential equa. "
tion and measured in a fixed way with knowa . ... . .
measurement statisics. Because a single "cycle . " o-4----" -

of a Kalman filtering operation involves many . - -

matrix calculations, real-time Kalman filtering
must be restricted to re-atively small problems. . a4 1 4
Performinir the matrix operations (triple mulzipli"
cations. inversions, etc.) optically may permit the - .
handling of large problems in real time. Casasent
has started this effort, and several others are "  •
working on it. Either floating-point operations or ........... • ..... ... M
on-the-fly scale adjustment is needed. Caulfield
has shown that both are possible, but his solu- - we ham M I Onols MW we wish to
tions are probably more existence proofs than oned to N oeu k sve Each IO co be
final answers. New algorithms are needed to lo M12, - NouAT is oopeo Is bes
extend the range of applications and, possibly, to represented ca o crobarrogement. " t.-.
speed up calculations. To date, all important on hee 1or M - N - 4. In he d gor, we hae
algor ihms have been iterative. Noniterative, umw<edaktWW e to 4cote omnecdhn i.xide. -
fully parallel solution of linear equations is possi. I Is omocfed lo Oulpt I ind 3. el. If we
ble in analog optical processors. Can similar e 1 kvpi a s _ .. . - -,.

things be done for digital optical processors?
Nonmatrix optical processors are developing . "

independently and rapidly. Perhaps the moat . . ... .. "I""-
widely pursued of these is the use of optics to . ..
make arbitrary interconnections among electron- . - .a-
ic (Goodman) or electro-optic (Lohmann, Lee, ad t. c ca a v .W

Collins, Goodman, Sawchuck, Strand, etc.) aye- r
tens. Sawchuck, Strand, ar.d their coworkers """ (9
have implemented a variety of space-variant and
space-invariant interconnect patterns uaing com- -
puter holograms to generate the patterns and . . " . ...... "

- -spatial light modulators to feed the information we CMw " " "
beck into the system. Their system (like those .. " ""
due to Lohnmann, Lee, Collins, etc.) closes on itself ". ... . z - 'A
for feedback. Clearly, however, this is not the -A Is a tkny mct In cam Jud le t
only configuration. Feedforward configurations e r " a .... ry 0 0 th a u "" "
lead to a variety of optical artificial-lntelligenee 1 r00 1systems,. • " A- 100101 .

This continuing dema.d for higher throughput . 0 0 DI

rates will drive future research toward higher 0 1" " ° 0 1J
speeds and greater parallelism. In these large ride fr obi*ft A simle. n Io w t
systems, or supercomputers, of the future, a ma-e. I . oorscllan the a anbr p
jor problem in achieving high throughput rates i n .ft ,.; . .
will be how to facilitate generalized communica- ~ c
tions among the large number of processing • 0 IOD 0,01
units. In a general-purpose computer, the full . 0 ci.,-:.-

" advantage of parallelism will only be realized if "0-0
each processing unit has direct communication . . .

with every other unit, thus permitting each to
handle a part of the action on a continuing basis. . .- ;.

The highest level of communications, or inter.
conned as it is cailed, entails a generalized [ T kiwWted k (po tI l " e(- -
crossbar network involving N2 interconnects charg)..
available for N processors (N units communicat.
'ng with N units), as shown in Fig. 5. Such a IOUNE 5. Geneiazed crossbr netwot"
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network becomes very expensive when Imple. fiberoptic lattice filter (Tur, Goodman, et.).
meited electronically for large N. but the inher- When the computational problem has sufficient
ent parallelism of optics holds great potential for symmetry, a full matrix approach may be an
inexpensive and high-speed crossbar switching. inelegant and expensive approach. The lattice

The generalized crossbar can be expressed ana- filter work represents an exploration of simpler
lytically in terms of a vector-matrix multiplica- systems for simpler problems. A very common
tion, so optical algebra forms the basis of solving problem in alr.bra is the evaluation of polynomi-
the interconnect problem. For example, consider als. If an analog optical polynomial evalua,,
the Stanford OMVM described previously. Let i" could be built, it would be possible to find the
and y" be the vectors of the crossbar inputs and roots of polynomials in a totally new way: scan
outputs, reipectively, and let A represent the the independent variable(s) and see where the
interconnect switch settings. That is. a 1 if, roots occur. This leads to a solution of another
and only if, the ith/output is connected to the jah/ long-standing optical problem as well. The quo-
input. Otherwise, av = 0. The OMVM with these tient Ila is simply the root of the function
ao's automatically makes the desired connections (liz) = a, which can be evaluated efficiently in
optically. Note, too, that numerical accuracy is polynomial form. Work along this line is being
not an issue for this application, carried out (Verber, Caulfield, Ludman, Stilwell,

The Stanford processor is, of course, nonpro- etc.). Since holographic memory technology al-
grammable; therefore, it can only be used in a lows ready content-addressable access to vast
system with a pre-established set of intercon. amounts of data, a truth-table lookup processor
nects. If one were to replace te matrix filter with appears both feasible and appealing. This ap-
a real-time device such as a 2-D spatial light proach is now being studied closely (Gaylord,
modulator, then a switchable, generalized cross. otc.).
bar becomes a possibility; likewise, the binary Finally, all of these optical computers are in
matrix mask could be replaced with a hologram, need of improved or specialized components. A
Going one step further, one begins to envision major DARPA-sponsored effort to improve spa-
generalized crossbars with picosecond switching tial light modulators is just beginning. This
speeds via real-time four-wave mixing or an seems likely to lead to improved throughput rates
optically addressed bistable array. Such a cap&- by providing a 2-D medium capable of 1000 x
bility would bring us into a realm of computer 1000 individually addressable modulator ele-
communications beyond the wildest dreams of ments, a cycle rate (READWRITE time cycle) of
electronic interconnection architects. I kHz, a dynamic range of 30 dB, and less than

A more structured optical arrangement is the 3% spatial nonuniformity. Other needs include
source and detector arrays that are compatible in
resolution, intensity, and dynamic range with

. .... -. :.. . ,. .these spatial light mo4ulators and that possess
" '... I individually addressabie elements.

0.#..

Conclusli onl o outlook
Upon considering the broad area of optical alge-

- - .. bra, including parallel algorithms, architectures,
.. .r devices, and their associated materials, a large

spectrum of interesting and important research
A . areas comes to "light." As the national interest in.,-.the computational sciences begins to hit toward.

. ,,* .. 7 the supercomputers envisioned for the 1990s, it
. ".t . .. will be vitally important for the optics :ommuni-

-t to pursue those research areas for which optics
;Plp *Q . : ........ , hoids the greatest appeal, such as large-scale.. r , . matrix-matrix or matrix-tensor operat:on and
.. , ., .. .,. processor inter- and intracommunications. We I-. : :'. . ; ,o .: : ' . .,V must also allow ourslve to look past the re-

-' : . search discussed above and into the use of optics
IUIO 6. Am ecture for perfomtg becolra pro- to perform real-time circuit reconfiguration. For

C€ung wih the RUM Cube. uW feeoko. example, light could be uted to modify the index
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of refraction within waveguids in suchi a manna reported in Appled Optics jaw.a of the past two
as to change channel layout& and besmatrel years. In addition, the reader is referred to pro.
elements on a circuit module. thereby addn eeedings of conferences on the subject- Aduances;
mnuch-needed flexibility to optical comp. t:g in Optical lafnfoution Procesing, G. Md. Mon*i,
Thes new directions are mentioned to con -. to ed. (Pine. SPIZ 388. 1982); 10th International
the reader something of the excitement -f a ield Compisting Conference (IEEE. 1983, Catalog No.
that is not only maturing, but also expaning. 83CH1880-4); Real Time Signal Processing W7,

IL Bromley. ed. (Proc. SPIE 431. to be published
late 19M or early 1084); Optical Engineering,

Many of the ideas presented in this paper were Jan. 1984. For papers reviewing the general area
topics or discussion at a May 1983 workshop, of analog optical signal processing. see the follow-

~Opica Tehnque fo MltiSenorArry Dta ing. Proc. IEEE 6.9,1 (Jan. 1981), special issue onL
Ptocssig, ponore by he my e~erch acousto-optic signal procesaing; Proc. IEEE 65,.1

* Oficeand he ir orceOffce f Scentfic (Jan. 1977), special issue on optical computing,.
Research. Proc. IEEE 62, 10 (Oct. 1974), invited paper by

A. B. Vender sAigt.

Rather than provide a complete list of speecific K .Jei CAFD b Pwikc Smo"c SOinW of od
* ~references, which would lengthen the article con- Rewor~bcKM 4 ovkQ P41. &fIoo. MA 01821; JOHN1 A.

aiderably, the authors direct the interested read- w"X DC mm WIL T. acm Is Domooo L
er to the following general sources. Much recent Ewcca~Enemgo egowleo eii~
research on optical computing architectures is Pdaof GA 3033

~Ii~A A IAES&~

'R shi-~ (c aers Shuter M ters Spifte

Plate Holographic Noon Losers Holographic
Processo= systems from Ito 50mw Plates & Film
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Loop antennuas for directive transmission int 2 material half space

Glenn S.Snh end LamN. An'

The hortrontal C.-cular loop and The Coasta array of tours bai0t a mateial haflfac am Setudued at
antennat for dureciue Isantirvumuors into the ha' space. ;" I Practical tatuattofi the loop- migt be
bmAi in air auth the darec'!se transmissuo n uto tbs vrti to determining thei optimum aconrry foM
tfe iunifte kmop and the array. the fa-zone fueld patterns, r.1 dirncuvn of the aittenati *hen ptacel
owt kisatess duetectruc are ,.oessdened firms. The directive pioleflics for the tattles dielectic are found
to be tnajaati.c of th~s t .r the tamer antenna over a mtedium with low tos when proper Acounat is
taken of the etminenial alienuation experienced io the Ion) medium. Paramnetric studies arm used to
obttain the matimum der'.-t. tl for thew antenunts. for the tinle loop of resonanst sift the optimumri
height oser the interface i, detrined. and for the two-emtent array consisting of a dnnu loo of
meuant size witth a uSiy parasite. the opimuum Size and spacung of the parasitic rellector are found.
%tejWurd Ckmru (Kid l-I ainsAnd #AIRS Of MOM elM teua abas anl Onefare betweni airdM hesh
Wa ter are un flow agreeiftc'su %ith the theosetuail retulit.

INRDUTO driven at t he angular position 0 - 0 by a d-'

In an earlier paper ( An and Smif a 19821 a compre- tion generator of soltage 16.. The radius 0. 1 i

hcise~ theoretical bnal)sis with esperamental confir- conductor. the radius of the loop. and Ole -, of
mati'n was presened for thc ci'cular-loop antenna anhe loopebovel The neracn aretwdene .- i and
near a planar interface separati. two semi-infinite nc , epciey h pcn ewe n
material regionas. The numerical resdlts presented in j sd,
that Rtork showecd that a loop in free space over a For a harmonic time dependence espf i it) the

material half space, such as the earth, could have a eetia osiuieprmtr o h fsae
diretiv fild attrn ntothehal spce henthe region 1, containing the loops are the e.- -ctave per-

loop is close to the interface and near resonant size 'c adteeeiv cnut'*s..th
(ite circumference of the loop is approximately one praersfrheteralsacrgin2ae *
wavelength in free spacces In this paper the analysis is n ~.Bt aen~ aeasmdttb omg

netic.1,-p- eTh oulxwvnubri
eittended to treat a coaxial array of circular loops ct ~= -~Tec~wc st ubri
above the interface. and numerical results nre pre- ete eimi
sented that demonstrate the aptirnuzAtion of the k, - 0405, 01 1*aC a. Z 0 111
single loop and the mso-elcment array 4driven loop
aith a parasitic reflectorl for maximum directivity where cj -c , 1w~. and the wave impedance is
into the half space. (o

The current in each of the driven loops can be
COAXIAL ARRAV OF CIRCULAR-LOOP' ANTENNAS expressed as a Fourier cosine series:

The coaaial array of n circular-loop antennas Imt- Mu-ll., cot (..$1 41
0 I 2. 3. il over a planar ie.:..tldt.- is shown in
Figure 1. Lich of the per'ectly *;onducting loops is vtere

looat MI eleephioe Ithoraturiei Afuuil. I Mtt-0

hfun- 2 MOO
Copyright 1991 by the American Cuevph~utes Urnunv

Pal"e number JSS(s The coefficients 1,,~ are determined hy requiring the
(554-6W mJo~tosssaootangential component of the electric field, E4. to sat-

ME



SMITH AND AN: LOOP ANTE*:NAS WITH HALF SPACE i / -

8 (33k) of An and Smith (1982] with p b,. , -h,.

= b,. and h k,:

V. I~ bbA'Jj;b.kbj] al.. hi (90)
I ,Eaa - a A.(fI,/ 9 Rl.&, JbJJb

dip 19 I + b k,'R, J , ).b. l l.b*.(, d. -9h)

b, where

. A-lij i- 1, 2 1101

- s = and the reftec" . coefficients R, and R. arc
* 0 .J ' *. ,i - - 7 / + , l (hla

f, 1 CtA,.ad arr .) o ercular-kowp anmcnns war a pipfl.ar :i I;. kj. L21 - (7, - :,, (°g + ,I (I Il?
anaerf~.ap

with kA, kz/k, = I/k 1 2 . After inserting (9a) and

isfy the boundar, :ondition at the surfaces of the (91p into (Sl and some rearrangement.

petfcctly conducting loops: C ,' J J;.bJi;.bj 4,lR...A&,- -

E. E4., + E4, + L, 1 ,0, £b, (41
m/:l +

i-. 2.3..n '

The three field components in 14l are the primary

field of the isolated loop. which is the field of he ith where h,, m nin (h,. haj Note that c. j,.

loop when it is in an infinite medium will, the When (SL (6p. and (7 are inserted in (4) and the

properties of region I: delta function expanded as a Fourie! cosine series, a
set of linear equations results for the coefficients l,.w:

the. , . sff; ,[ ... + b-... + 'r. 'l=, , ', 113)

the secondary held, which is due to the interaction of ,..

the ith loop with the half space, region 2: i - 1. -. 3. -

E,- - m' . . mI(tlI b.. cos (M'0) (61 or in matrix notation,

*. and the field due to the current in thejth loop. which [Y'-1 (I.] - (Se] (I4a)

also includes the interaction of the jth loop with the where the elements in the symmetric x x n admit-
half space: lance matrix [ Y.] are

E0.1 h i_,c'o (I7 Y.wj-in,; %(. + Ae) i - (l4l

Formulas for the coefficients a., and b., in (5) and .,. ja;s¢., #

(6) are given by Kinq and Smith (1981] and An and The mth Fourier series coeficients for the currents
Smith [ 1982). respectively. The coefficients c., are on all the loops are determined by solving the system

of linear equations (14a) for the column vector (1..
.,,-nl + 0,al (8) For numerical evaluation a finite number of terms

where GN, and G,, are given by equations (32c) and are used in the Fourier series (t)pically 20 terms). so

.. 9".. .. '

..... .... .... .... .... ..... .... .... .. ".Io..



SMITH AND AN: LOOP ANTENNAS WI1TH HALF SPACE

that m -0. 1. 2. 111 "* Tus there are m. sys- For media with low loss, the terms of 0(r -Arr).
tems of equations (14a) that must be solved- to corn- i - 1.?2. in the asymptotic expansion for the field can
pletely specify the currents. provide a useful description or the antennas direc-

live properties, particularly when the field at anglesDESCRIPTION OF DIRECTIVE PROPERTIES near 0 - it and not near 0 - x/2 is of interest. The
With the Fourier series coefficienti icr the currents terms of 0(e-*#/,) are the "geometrical optics" field

in the transmitting loops determined, the total dcec- [80rekhorskikh. 198G; W~ait. 19691 and will be re-
tron.agnetic field in either region. I or 2. is deter- rerred to as the far-7one field E'r. 0. '*) or the an-
mined by summing the fields produced by the mndi. tenns over the hair space. For the array of circular
vidual loops. Formulas for the field of a single loop loops, the far-7one electric field in region I is
are given by Ali and Smith [1982. equations (36) and
(55 1]. Note, in Figure 1. that the spherical coordi- E.41r. 0. 0)=
nates (r. to. 0) and the components of the electric4
field E, E,. and E. are equivalent to Kr 0. #') and
E,. 4,.and E. of .4n aP)JSl,ik[, 19812]. Rr~'

The aforementioned formulas for the electro-
magnetic field are complicated integral expressions. (I M~(. th i l 1,..ikb i l] (5a)
similar to Sommerfeld integrals, that apply at any
field point %,I. U. 0i. Some simplification of these
expressions is desirabl: %%hen they are used for a ~i~*~** 'Ci

parametric study of the array's directive propenies.
The case of interest is the one -A here the antenna is ;

used for directive trinsmission into the lower half ,~

space. region 2. Here, one is primarily interested in sn(43,kb i
concentrating the electromagnetic field in the lower rol sini, 0Jkl.si )( b
haif space at polar angles near 0 - x and minimizing
the electromagnetic field, or power radiated and dis- Eg,. 9. *I-0 lc
sipatrd. in the upper hall space. Antenrnai %i it), these
properties are useful in communications systems with wsith the reflection coefficients
transmission from the --v-rface to below ground and
in detection systemis u~re signals incident from the A 2o l- -snE)

surface are scattered from buried clbjct;. Systems of cos t + (k,11 - sin1001 (54
this type are practical mainly when the dissipation in "I Cos a - (4-, -sin, fJ)i
the material half space (region 21 is low, so that the R (15e)
electromagnetic field wsill penetrate to a significant i aO l+(~ i l
depth. i.e.. the exponential atnenuation e-" for a The far-zone electric field in region?2 is
spherical wave originating at the surface, po-int S in
lFigure I. must not he excess.'e at the radii of in- ti.,,)-
W eest. 4 T,

The directive properties of an antenna in an infi-
nite lossless dielectric medium are easily described in h(kiA ~ ~Cos (Mol
terms of the angular dependence of the far--one elec- '

tric field E'(r. 0. 0),which has the asymptotic behav-
ior O(eP';r). k being real. For the antenna over the 4.J (&hsi9'-J.kS int)J (1)
half space, the behavior of the field is complicated. ~ ~
particularly when there is significant diismpation in 9, 0.) ct er, 4ii
the media. At angles 0 not near a12. the asymptotic. '-

behavior in the upper half space may be O(e-A"Ir). .1

and in the lower half space OMs-A"1/r. Near the XfI. i m)j~,sin 9'1 (16b)
interface (El near nt/2) a **surface wave" may domi- .- I .

nate with the asymptotic behavior 0(1l!r'). £tr. 0. ~)-0 (l6c)
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with 9' determined from Only one component of the electric field, the 0 corn-
- ~, (3~ ponent, appean in (191, because the field is linearly

,p.J the transmission cofwirt A special case of interest is that of lossless media
(a,-0. i - 1. 2) and a lossless antenna. For this

- 21cms 01 (,6e) case, a directivity can be defined for the array, and it
* ~ c 1c +1 (ki., - sin, ik' s equal to the pain

TO 9zIo 1 + (0, - Sin, tI), 0160) -~ it) -4I ,E*.(P.90-x G IV.1) (0

For (15) and (16) to be useful in a practical situation, The front-o-back ratio of the array for losbless
the field must be well approximated by the asymnp- media is
totic formi (far-7one f-ld) at radii r that are not so
great that the exponential attenuation (it-AelM - C, IE;I.e - X) (1
e - - has reduced the field to an impracticably low E(.0-0
value.,,E(.U=01

The standard measure for the directive properties
of an antenna in an infinite lossless dielectric NUMERICAL RESULTS AND DISCUSSION
medium, such as free space. is the antenna gain: The case of a single driven loop Ua - 1) with a

4xrYf Re rStr. 0.0) single parasitic reflector (i = 2. V02 = 0) will be used
G0(0. 0) P. (171 to illustrate the directive properties of the loop array

over the half space. Even with only two loops. sev-
where S, is the complcx Poynting's vector in the far eral parameters are still needed to describe the an-.
zone. P. is the time a'.ertige power supplied to the tenna and media. The following assumptions are
antenna, and Re indicates the real part. The gain Go made to simplify the optimization of the array:
is independent of the radial distance r. medium I is assumed to be free space or air (t.,

For the antenna over the planar interface, both - to. a,, - 0). the radius of the driven loop (loop I) is
media, regions I and 2. may be dissipative. ;n this taken to be flt h, - 1.0 (a loop of this size was shown
case, if the definition (17) is used for the gain, the previously to have useful directive properties), and
gain will be dependent on the radial distance r. since the radii of the conductors of both loops are taken to
the exponential factor r-21 will appear in the nu- he equal, a. = as with 1 = 2 In (2irh1 la,) = 20.
merator. A similar problem is encountered when the The directivity of the single driven loop is optimized
gain of an antenna in an infinite diSsip211-VC Medium fast by adjusting its heipht hl. then the directivity of
is considered [King tand Smith. 1981. Aoore, 1963). the array is optimized by adjusting the height h2 and
The following definition is proposed for the gain of the radius h, of the parasite.
the antenna over the planar interface: Media which roughly correspond to fresh water

and moist earth are considered fo. region 2. these
4,,'(-R [(. 1 (19) have the relative effective permittivities t,1 - .le

equal to 80 and 10, respectively. The effective con-
where i - I for 0:5 0 <x!2 and 1 -2 for x/2< ductivities #,. of the media are assumed to be zero in

0 s . The inclusion of the exponential factor in the the optimi~ation (lossless media, loss tangent p,, -
numerator of (13) makes the gain G independent of &,z/wct,2 - 0). Later, the directive properties of the

r. array for low loss in region 2 are shown to be s~milar
For the array of loops the p'in in the direction to those with no loss.

9 - X is Single loop. In Figure 2 the directivity D(8 - it)
(equation (20)) of a single loop (Po b - 1.0,f, - 20)

G(O - it) - 0, Re (fa) Ire"EI,. 0 x) I) is shown as a function of the height h, /i. above the
/ * 'interface. the relative effectie pecrmittivil y t,, of the

(IC, 1'j GI., 11 I) (19) lossless half space is the parameter. The front-to-
back ratio F (equation (21)) for the same case is

where G, is the input conductance of the ith loop. shown in Figure 3.

. .. ..
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Ir* ltIi.e.. in the medium at angles x - 0,1, :s S' st Tbt
evanescent waves appear outside this cone. For the

v ~ ~medium with &.3~ w 0. 0~, - 6.4'. and for the
<F>. ,'~T7-.., medium with c,3 - 10, Or, - 18.4'. When the loop

i'2 ~ kvk/A\" is very close to the interface. h, I A0 << 0.075, the eva-
* ... U. L U Li nescent waves. which appear in the field pattern at

~T-AC7angles xt/2 <9 0 <i - 0,1j. broaden the pattern (add
side lobes) and decrease the directivity (for example
see Figures 10 and 11 of An and Smith [1982]). As
the loop is raised above the interface, h1/A0o in-
creases; the evanescent -waves are exponentially at-

v tenuated and become less significant in the far-zone--

(s;1Iz>\ \ pattern; the pattern narrows to one with a wadthN roughly equal to 28,1,; and the directivity increases.
* A,.The back lobe, the pattern in free space at the angles

Sir 0 _- 9 < x/2. increases as the loop is raised above the.V...-)7i~jZ7)interface. The increase in the back lobe decreases the
directivity. Th:.et two competing effects, the increase

Ise i~*,,- n the directivity due to the decrease in the width of
the main beam in the medium (region 2) and the

11& 4. Magnitude of electric field comp~onents in far zon of decrease in the directivity due to the increase in the
sage loop2 ins aIt P1, 111,, = ... 0 .01 owe ltei chnalt back lobe in free space (region 1), give rise to theA
sistaer inturface a., - 80. 4h) Atcrcaanh Inefc . - 10. peak in the directivity.

In a practical application the media would not be
with respect to the direction -e~: others are evanes- lossless. and the field at a finite radius r would be of
cent with respect to this direction. The propagating interest. The results in Figure 5 indicate the effects
waves in the spectrum of the isolated loop appear in these two factors, dissipation in region 2 and a finite
the far-zone pattern of the loop oxer the interface radius, have on the field patterns. Here, the patterns
within the cone descrilwd by the, critical angle 0,1,- are for the three components of the electric field. E4.

AI Oltat ~

* AIR

INS S. Magnitude of n',mtaltred electric field compnewaete vI E 1 on a sphers: of radius 0 , - tO for single
lopin air III w 1. p, m Oover issipative halspac rt,, rI &h, m to 0, 24 b0,/A4 -W 00lot Air-water

Interface,.., tb111)Ar-crtantirface a., tOp, mot.

7-6
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Ait

0 0.1 0.2 03 04 0ts

"3l. kf

Fig. 6. Directisit) of loop with single parasite in air It, 1
p, Op0 oser losslevi dielectric half space 4c,., - 80. ii,, - 01 as aP

*function of the size and the spacing of the parasite. P.5, = 10, to

A, .. 007. O = 0. , -a~Fig. S. Maginitude of electric field coinnrrents in far zone of
loop witlh single parasite in air It_, - I. P,1 - Op over lossless

Ea. and Ea,. computed on a sphere or radius fto = dielectric half space U'..,. p,. . O. A~h. . J 0. h, 0073.
10. Results arc shown for media with t,, = K0 and &h:' I 1025. df ii, 03. 1, 2 0. a, - di. gal Ais-ater interface4
10; the loss tangent for both is pill2  0.1. Note that 1-i -110 1IN Air-eaflh interlace t., - 10.
the field components arc multiplied by thc ractor e,.
i - 1. 2. to show, the detail of the patterns in the medium predicted using tar-zotie results are qualita-
region with dissipation, region 2 (c,j - 80. ea"i tively indicative 'or those fot the loop over a medium
0.011; t,2~ = 10, .e-~ 0.21). These patterns are tor with low loss at a finite radius. Note that the pat-
loops at the same height as in Figure 4. hibi~ = terns in Figure 5 have structure at angles near

*0.075. A comparison of Figures 4 and 5 shows that t? = ir,'2 not predicted by the far-zone results.
*the ditectitie properties for the loop over a lossless Loop withI parasite. Graphs of the ditectivity

D(O Al it) (equation (20)' fot a loop with a single
parasitic reflector ate shown in Figures 6 and 7;

Id 13 12 these results are tot lossless media. p,2 - 0. with
t2Al80 and 10. The dri,.en loop. flo b, = 1 .0. is at

IS d 1 the height h, /;.o - 0.075 that was previously deter-
1.1 14mined to be optimum, and the radius Poh, and the

Is ~spacing di0. AA di 2 j'A0 of the parasite are varied to
obtain contours ot constant directivity. The opti-

1. mum directivity ror c,2, 80 is about 23 dB and
occurs when /10 A, -- 1.023 and d'AO: 0.3; the opti-
mum directivity tort z = 10 is about 16 dB and
occurs when flhb, %1.025 and d,'4 :t 0.2-0.3. A
comparison with the maximum ditectivities tot the

as single loop in Figure 2 shows that the addition of the
I parasitic reflector increases the directivity by about

a .W 0.2 033 0.4 0.11 3-4 dB.

40* Far-zone electric field natterns tot the optimum
Oarcriit oflop alS nle ars en a ~. -~.configurations. ft 0A, - 1.025, d,'i5, - 0.3. ate pre- IFi. Tete inecivt Fiur loo ait comprlo withit the aiatterns1

F, m O over lowsless dielectric half space ir, - to. p., - 0p1& a sen nFgr .acmaio ihtepten
function of the site and the spacing of the parasite; Ost, - .0. fr a single loop in Figure 4 shows that the parasite

hMa- 0075. 1), - 20. a, -At. has reduced the back lobe in tree space (air) signifi-

77 1
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Fig9. %1 itude of normalnd electricf 6Mcomponens. elCI ona sphere ofradius Poor 10 for loops in
PitIL- it -00t oerdswrtmouorhalf spoo tL, p I tI. -,.10 lo, ;. 0.075. P~,. 1025 d. -. 3. 11 -20.

cantlv and narrowsed the lobe in the medium slightly. for the array over a medium with low loss at a finiteL
The effects that dissiation in the medium (p,. - radius.
0.0) and a finite radius of obsersation qtn, = 10) The directive properties or the single loop and the
have on the patterns are illustrat:ed in Figure 9. As two-element array of loops in free space (air) over a
for the case of a single loop. the directive properties lossless material half space are summarized in Figure
for the array over a lossless, medium predicted using 10. where the directivity D(9 to at) is plotted against
far-7one results are qualitatively indicative of those the relative effective permittivity of the halt space.

30 1 1 1 1 1 1 1

N~~ QA10iT
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MATERIAL

WiTH WOIRWIR

FIX. It. Detail de-penital aappaus..42

,,.. The parameters for the loops arc those pre. COMPARISON WITH EXPERIMENT

viously determined to e optimum: Pobo = 1.0. h / The experimental apparatus shown in Figure II
;..o '= 0.075. Poh, - 1.025. and d',;.o 0.3. Results was used to measure the electric field patterns of
are shown for two conductor radii. Q, 2 In (2nb, / loops in air above fresh water. A plastic tank con-
all- I and 20 with a2 - a. taining the water has a vertical metallic image plane

- .*

ATtA[I A.- Wait'"

- T- ONY

SONG1I LOOP LO0P OWN PARASITE

by-..-I-AIR -55

Fill. 12 Comparison of theoretical and gapcvinft.tal field pattens for loops ini air abowiv water; Aeb,- O.
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SMITH AND AN: LOOP ANTENNAS WITH HALF SPACE 673

Figures 5 and 9. The addition of the parasitic eflec--
14 ta ,-0-. for is seen to reduce greatly the level of the back lobe

* ,'*_ in the air in relation to the main lobe in the wate."
The relative ;ain GIO - a) of a single loop in air

' above fresh water was measured as a function of the
height of. the loop above the interface h, The

*results from this experiment. normalized to 1.0 at the
06* \* maximum, are presented in Figure 13. They show a

I peak in the gain when the loop is close to the inter-
/ *I face. as do the theoretical results in Figure 2 for the

0.6 . \0directivity of the loop over a lossless medium. The
discrepancies between the graphs in Fiaur..s 2 and 13

o3 are probably the result of the experimental gain
being measured with a field probe at a finite radius
from the antenna.

0 os o cis 02 CONCLUSIONS

.% .* The theoretical analysis for the horizontal circular-
loop antenna over a planar interface has been cx-

rig. 13 ,MaeUfed reut.C gain for inlgle loop as a function of tended to treat a coaxial array of loops over the
the height jtoc the air-watcf iniefa e. &6, - tOi.I0, 13.5 interface. Parametric studies werc performed to de-

termine the optimum directivity for transmission into

attached at one side. The half-loop antennas are a lossless half space both for a single driven !oop and
mounted on the image plane and fed from behind the for a driven loop with a single parasitic reflector.
plane. A small monopole probc protrudes through These results should prove useful in the design of
the image plane and is free to move through 360 on antennas for directive transmission from the air into
a circle of radius r = 30 cm. The probe is used to earth %ithlow loss.
measure the field component ,Wt) in the ait and in The theoretical analysis was verified by making
the water. At the measurement frequency of 900 measurements of the field pattern and the gain of
MHz and room temperature, the electrical properties loops in air above fresh water.
of the fresh water are approximately t_2 % 78.8. The directive properties of loops with other shapes.
p,2 % 5.3 x 10 ". In the air, PIr flo r % 5.65. and in i.e.. not circular, are expected to be similar to those of
the water. P, r 1 50.6. xr :t 1.34. the circular loop when the loops are near resonant

Figure 12 is a comparison of theoretical and exper. size (the circumference divided by the wavelength in
imental results. I EI. for a single loop and a loop air is approximately equal to II. A schematic drawing
with a parasitic rcflector. The epicrimcntal data are showing a possible simple construction for a two-
nomalized to the theoretical results at one point in element array of loops above the earth is shown in
each medium JO - 0 in air. 0 = 180 in water). The Figure 14. The polygonal loops (octagonal in the
dimensions of the antennas are close to those pre-
viously determined to be optimum. P/b, - 1.01,
h, 0.075. P ob - 1.05. d';.. = 0.225. The agree- PA .' TIC

ment between theory and experiment is seen to be
excellent. Note that the theoretical patterns in Figure
12 are not the far-ione patterns, but they are the . -

patterns computed for the measurement radius using .I DRIVEN

the full theory for the loop array. LOo
The pattern in Figure 12 for the single loop has a t-

small lobe in the water; this is due to the exponential . a- .

attenuation experienced by the field in the water. LIN .I•;.
I - 0.26. The multiplicative factor e" was not Fi& 14. Schematic dnlvn sooing potable consiucton for.
included when plotting these patterns as it was in two-elemeni arbay of loup abretheeart -.

47
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figurc) are formed by stretching wire around equally Breethoskilt. L. MW a ittsi Loywvrd Media. 2nd oid. pp 225-
spaced insulating poles. The driven loop is fed in a 2W6 Academi.c N... York. 19W0

maner o spprt he esnan copoentof he King.RI. W. P. and 6 S Smith. Aarnpama ll Mtrv Fenjapse,.mannr tosupprt he rsonat coponnt o the salt Th a rd Appi-iisitu,. ppt. 527-570. MIT Presti Cam-.
current in the loop. For a circular loop this would bc bnc Mas. 1981
the Fop ricr series component 211 cos. Moore. it K. Fffects of a -urtounding conducting medium on

Ackivi~dpppiips.The authols with to thank I D) Nordghrd antenna analysis. ULU Tramn. Atrnnit Pwopul. AP-I1l4L
forhitcrticl radng r se anucraa.Thelp also Wish 10 thak Wait. J. Rt. Characieneics of antennas over kotay earth. in A.

IA. Fuller of the Engineering Experiment Statwn of Geoigia uennau liwy. Part It. edited by Rt. E. Collin and F. J. Zucker.
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Electric Field Probes-A Review

HOWARD I. DASSEt4. WDOo W5A45* mue. vs GLENN S. SMIrTH, snt netava. Ku

Awae-V~ettr feldph~eaejjla af* dpu~ina 3?d.. Fors a mptiehenive list of references on tise desggn and us. of
facor.eqnarmserblasu'aalslai like. ad sensors device be** lines electric rnel probes, the reader is referred to the extensive bib.
imptemuowdo ta lardwy of nata. Usee otleeigeni dlpaea alt gemfafly lrography of refeence I 10.

* need Is am C-eld Probe to 111-1111 a -*--ma which toscoe inar dule
:a all inberaagas ofth ra leu a ie u. iade efa # nave been sui 11. BASIC PRINCIPLES OF OPERATION

init aetriealliy sAn or ftalatilly boed dipole. So p odoi. "" rytad-
bowd de.ku (4.2 mksa so is Gus). Therascouie detactarsan s ed to Several el-ctric field probes have been developed with a con-
Provide Ivan ta-veraged dan for high Perah-peves maodabtad Aetlds. struction similar to that shown schematically in Fmg. 1. These
(Wit am e. togribr wi a suiably modulated ikhe soe" sYb probes contain five basic elements; a dipole antenna. a nonlinear
used to face a side-head aeapes't.Uhia dolsi Usk ft...a I#e dipol A"~dt
detew so a resme evadua. Application of Eafirld aobet camp gri deector, optional lumped element shaping and filtering net.
ther ineaareneat of netelds u ing salmals #spend so m assisign reels. works. a nonperturbing transnsisslon line and monitormin tru-
fint the amabatqu or newIs (wat for electromagnetic comparabiity menlation 121 .1101. The operation of the pro~be is fairly simple.
or radolie. safety pwspam. rrabia a"e avaltale that can meamun fied For a continssous-wave incident field with the frequmcy Wi. the
es-reagibe from see b"I ar I* V oer to"WVin tre). antenna produces an oscillating voltage sciona the detector at its

tenisinals. Due to tse nonlinear characteristics of the detector.
INTRODUCTION a signs with a de comnponent proportional to the squire of the

* MAY YARSeletri filds avebee mesurd i a~ amplitude of the incident field is developed at the detector. This
GIO MAY YARS elctrc fels hve eenmeaure InAN signal is itted. and the d-: coemponenit is conveyed over the

aand in material media using electric field probes. The term transmis',on line to the monitoringl instrumientation. Thus, a
'E-feldproe~ illbe sedto escrbe vaiet ofmeaureent signal proportional to the square of the amplitude of the incident

tools with the following baskc characteristics: a dipole antennas field is measured.
with a detector mounted across the, gap which separates the two In the brief analysis that follows, the isiplified probe of Fig.
arms of the dipole, a nonpessorbing data link connectnth 2(a) is used. The lunmped element shaping and filtering networks are
detector output sith a temnoe observation site, and the ability not included in this probe, the lossy transmission line connecting
to measure accurately field strengths from about I Vim to 1000 the detector to the monitoring instrumentation provides the low.
Vjm (r ms). Three mutually perpendicular, single-antenna. E-field fleigfrsedtco.Teicdn otnoswvpass deigfrtedtco.Teicdncotnoswv
probes may be combined in a closely spaced array to construct electric field, (fo simplicity. is asaumsed to be parallel to the
a probe with an isotropic response.axsothdile

Early versions of the E-field probe were usually "homermail aisottedioe
one-of-a-kind devices used to measure relative field distributions. Fto(, I) - Es(F) cos (w + ,;1
such as the field in the aperture of a microwave antennaI.

When concern arose over the possible health hazard& of non-=ReE(;,f.sj(I
ionizing electromagnetic radiation and government safety stand.
aids for human exposure wete developed, a need was crested for where Re indicates the real part and bold type indicate, a phastr
probes that could make an accurate, Absolute measuirement of quantity. A more general field will be considered later.
electric fields with a wide range of parameters. such as the evel. The incident electric field generally is not uniform along the
frequency, and polarization. A new generation of E-field probes axsothdplenena(as.Topvieptalrouin

was eveope bygovrnmnt abortores nd ommrcil frms of the field, the antenna is often made physically short and elec-
to meet this need. This paper presents she basic theory for these tial hr,9 ns)o41 hr ssehl~egho h
probes, describes several practical design that have been imple- dipole and A0 is the wavelength in fre space.'I The voltage across
mented. reviewa the majer Applications of the probes. and dis- the terminals of the electrically short dipole when they sre open

* .cusses the state of die art of these devices, including develop- circuited is approximately proportional to the incident electric
ments which are likely to occur in the near (.,tAr*. field at the center of the dipole (the origin 0 in Fig. 1);

Thi paa ws Ivitd fr pbliatin b th J~E Wve ropgaton and the impedance of the drivten dipole is approximately capaci-
Standrdi ommitee.tive:

Manuscript received June 22.19 svairdJanuary 4. 1993, The pot. 7A64 r~-j/e#CA - - Iln (h/A) - 1llnDhk (3)
ibm of ther work performed et the Georpoi tmritssie of Technology was
apported ini pat# by the Siatol Science I ounrdatron under Giant f CS. where &A is the radius of the dipole conductor and to is she ian.
8105163.

N. 1. Bancon b with the Department of Health and Humano Services.
rood and Drug Admsntrstion. National (Coer fot Devices and Raiom. I Spstiat resolution is determined by the variation of the incident rcsc-
logicat health. Itora .,1tr. MiD 20957. irk field over the letngth of the do"e. toat hith rewoiion. the length of

G. S. Smith is with the School of Electril Engineerin. Georgia In- the dipole mod be uuiati compated to the dotance over which the ghedea
tfirur* of Technology. Atlanta. GA 303132. of the electric field is usaifeanL

0F896j1/S" ISl0 93IE
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K MSN AND SuMTH SLECTIC VIRLD FROMU 711
44diseffite. power Jor. this takses die temperature Cf dite hot June
I doe TX~ above that of the cold junction TC and;1 roduces a thei.

meallctric voltage VT diat is approximately prop ortional to the -

tine-average power dissipated in the resistor:

where a Is die Seebeck coefficient for the particular combination
of mateials used in the thermocouple. The highs-frequency iec.
lion of the equivalent circuit for the thermocouple detector con-

F1S. 1. Schmatic oe eln prbs. dasts of 0 e resistor R, with possibly a parallel capacitance C, to
4 account for a change in the geometry at the junction. The low.

abs, frequencry circuit contains the thermoelectric voltage source V,
TI and the series resistor P.O. Note that due to frequency depnd-

ewce. die resistance Pie may not equal Rg.

~ < ~ I ~ Resistivir 7)irrsminison Line
The transmission line connecting die detector to the monitor.

Ing instrumentation has an internal resistance I er unit length rd
for each conductor and a capacitance per unit length c. The(a) resistance pet unit length is usually chosen to be much greater

'A th an the inductive reactance per unit length (2.1 X- w.). making

L~ ~'7~ v) TL~i7. . the characteristic impedance and wave-nmberic on the hane ap-
ITtJ~001 ~' proximately

~~i~IIIand

In additsoia. t Length of dir line Is selected so that the attenua.
tion of a wave propagating over it will be large ( I exp (-jkLS) I<
1) at all of the radio frequen.-ies oEtest The high resistance

(b) pr unit length of the transmission line produces three effectsi: it
Fic. 2 (a) Simpified probe. (b) Equivalent circuit for probe wMr diode :tduces die direct reception of the incident field by the line, it

or Itemooupe detector, reduces die iatterit of the incident field by the line, and it
makes the line behave as a low-pass filter 1141.

pedance or free apace I II). These two elemeeits. the open circuit The transmission line can behave assa receiving antenna for the
voltge nd ie atena Ipedncefor th Thveti eqivaent incident field ani produce a signal at the detector; this will cause

circuit for the receiving dipole shown on the left of Fig. 2(b). tefedptenfetepoet ifrfo hto h hr
dipole. The principal perturbations introduced are a sift in the

Detector position of the nulls in the e!evation pattern for the dipole endsa
The detector in the probe is often an unbiased point contact resoetoe-rifedsrhgnatoheaso heipl

or Schottky barrier diode operating in the square-law region. or a 14.Frabytowr ieaihacnutrsaigb h
diertiooupe jnctonin ig.2(b th ?qivaentciruitforthe relative distortion in the dipole pattern for a plane wave incident

diode is divided into highi and low-frequency sections. The high- sapoiteyrprinltohednesoesprmtr
frequency section consists of the junction resistance R, and nhejI()
capacitance C1. and the series resistance R.; the parasitic elements x(/X~Ih
associated with the packaging of the diode are omitted. The low. I
frequency circuit contains a voltage sourne Vd and the video No,* that the parameter X is quadratic in the dipole length A.
resistance A. *4 Re + R1. For square-law operation. the voltage but linear in both the spacing It and the resistance per unit length
source is proportional to the tints averag.s of the radio-frequency (Ilri) of the transmission line conductors. Thus, the relative dio-
power absorbed by the diode (121. (13,: tortion is kept fixed while halvring die dipole length either by de-

YE - 'IdPa. (4) creasing the conductor Spacing by a factor of four, or by Incties
Ing the conductor resistance by a factor of four.

where -rg is the voltage senitivity o'f the diode. When the probe is used in a mnultifrequtncv environment with
For a thermocouple detector the hot junction of the therm.. widely separated frequency components, the reception by the

of the dipole; see the Inset in Fig. 2(s). The series resistor may be As an example, consider a probe being used to meaure a high
a thin film of evaporated metal about 1000 A thick forming the radio-frequency s0gnal in close proximity to an electronic device.

ho jn... ... Te..do-rq.nc..ren...----hereito--y -------------. poucd yth dvce(Itrfrec
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fo h gi)w.i nUmpl to *4i Pmobes trauunaa.lioe1. The

The current induced in the transmission line by te. incident
fitlsa--ics a secosdior atScattered Coeld which alomay b
oadrote f error in the measu-ememt. The reductioe in the scat-

illstrate-J iFg.3a.weetenraietoaSctrngrn
UrAVC 0- the line OLM) is Shown a4s& function Fit the nor-I;'

mu-t. ro,.vaasnce per uni legh A ~~alre. The incident field *

is a pline wave with the electuic field parallel to the conductors.
an l:line is one wavelength long 'IA. - 1.0. 'he two rions

marked on the graph re'piesent typical restasces at a frequency
of I G~lt for a Found catbon.Teflon conductor developed by the .

J (A ~ National Bureau of Stand ards (&L -0 35 mmn. S - 65.6 Kn/in.)
and thin metallic-Calm con Juctors (Si - I - 10 MS11m) 151.1(61. * v
From this graph, it is clear why the highly resistive transmission
lines are often referreJ In as "transparent" to electromagnetic
fields at high radio and tacrowave frequencies.

A transmission line with a high resistance per *anit length is
very dispersive. This is illustrated in Fig. 3(b) where the voltage .
transmssion ratio I'(s)1V(0) is Shown as a function of the fit.

4 quency for 20 cm long lin made f.-om carbon-Teflon and thins
7 f~~~i conductors. The tianimassion line is seen to behaeve ass l ow. ~~ ' U

pass filter with little distorticin occuring for signals with fr.. (b)
quencies below the point Where IkLCI - 1.0. In the high-frit. Fill. 3. Characteristics of tossy trasnmis sei m al Niorasd Wwi
quency equivalent circuit of Fig. 2(b). the input impedance of the Krittelm emu Melton of a ae wa-aeaaaoh hser hue r/AO - 1.0 assa

trasmisio lig apeas aros th dide.for a line with high flunction of the nomraiied resisance pe hne lta. fbb The trano,
trans~~~~~~~~mission lane apeas acrs h id;mi. aueasiwpur it". A 2oesa. c 20 PI'm.-

loss ( I cxp (-ikLs) I < 1). thi% is approximately the characteristic
impedance Ze. In the 10w-frequency circuit. the transmission lang with the diode. With this approitimation and (211.(9) ssmplhfies
is represented by a "Ps" low-pass filter network.tobcm

Probe ResponsefcC2 , I

The response for the probe, i.e.. the voltage V. across the IVin I CA )~_____
input impedance Z. = Roo, + IXm. to the ansaSIMentation,160 is -c4uL
easily determined from the equivalent circuit in Fig. 2(b). 2 The I E(Olaw)1i
Series resistance R, is set equal to zero since it Is often much I 2R, I + A.+2' I
smaller than the junction impedance; the response for a probe
with a diode detector is then uCIE"(O W)S (104)

R. (w RCA )i-f I V., 29

The samne expression applies to a probe with a thermocouple where
detector when R,. C,. R.- and i'rd are replaced by R,. C, RIO. -II(A+ lb
and 7, Note that the capacitance of the elements in the 'i
network of Fig. 2(b) situa the reactance of the impedance Z. d0 Each bracketed term in this equation is associated w!th elements
not appear in (9). since a dc signal is detected when thie incident in the equivalent circuit. Fig. 2h)). The rust !, m accounbh %r the
field is a continuous wave, frequency dependent divsions of the antenna's open-cIrcuIt

The lossy transmission line is usually designed to have an input voltage V,~ between the asia' am' impedance and the di-asle im.
impedance that is large compared to the impedance of the di-...e pedance. 'I lit second term is one tune-average of the radio-fre.
IZe 1110 RI). :f this requirement cannot be satisfied by the trans. quency power delivered to the 'IsAt when the diode impedance

mission line alone, a lumped series resistmnce can be added to is large compareui so the antenna impedance. The lst term rep.
each conductor of the iine so increAse the impedance in parallel resents the division of the detected dc voltage For beivieen

the video resistance. the transmission lane resistance and the
3A ceompiete diuscisn oftag probe's respoms. inghadbsgtae effects of resistance of the monitoring I!'.trumentation.

paaieeeet ntedoeeuvln iai.hgvni 1 c.3. Tebhvo ftersos ihfeunyi hw nFg
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Whuenth frequency icesdbeodtepinti whr thIe~.w lite
diexa enn ahe lt icll diSo t beiw ?.een the element n Rhe hgh
itrequcqivalent circuit rfof h ag ue inb and a (3).e and del E( )= E()CO(ri +*()

r esne reunyis a*nreasgiv b e ypicd theponse fher the 11
* ipl aten a letrcll hot j ~03.th leensan-Re (1'(,. (12)

electrically longer antenna a shown as a daMe line in Fig. 4.
and it as ween to peak in the vicinity of the frequency for the first Each of the three orthogonal dipole probes shown an FiS. 5()

A resonance of the dipole ti, (at wr, Po - /2 ). The response is when placed ini this field, will have a response proportional to
/relatively flat over the frequency range which e.,tends from about the square of the amplitude of a field component:

2w to 0.3worn practical designs, the resonant frequency sa, V. -Cl E'(O~or)I 2. ximz.y.z. (13)
*is determined by the length of the dipole, and the frequency we a I

is. changed mainly by adjusting the juanction resistance R, Increas- After the three responses are summed, a signal proportional to
* ing R, extends the region where the response is flat to lower fre- the sqare of the Hlermitian magnitude of the complex vector

quencines. however. an increase i. Itj also decrease% the aensitivity fi £'(0. wr) is obtained 1151:
*of the probe (he outpu IV. IlIl a fxed ield IE' ) unless the

input resistance of the transmission R. is large compared to the I IV.. -C I El. (0.o)I .CII00.orI. (
Junction resistanc. The factor 7d is approximately proportionala

-.. to R1 . and Re m Ri. thus, the response (10s) it proportional to This signal is independent of the orientation of the probe with
the frequency independent factor R.JR. + 4' 26:) when respect to the field. thus, she responses of the probe composed
wr 30 we. A change in ther junction resistance R1 wall not affect of the three orthogonal dipoles a isotropic. Note that the Her-
the sensitivity of the probe provided R. + 2,', )b R1. mitso magnitude of the complex farld is ass upper bound on the

The preceding analysis is for a cuntinuous-wave incident field. instantaneous field:
* The response of a probe with a diode detector to an amplitude

modulated incident field Will be similar to (10a). provided the lj'(0o. i k4Oo~. (IS)
* frequencies in the square of the modulating signal are within thte

pess band of the low-pass flter formed by the lossy tranumssion In practical field probes, the centers (terminals) of the three

lass. 1-0-. 1411 I 4 1 at these frequencs. A factor f'(t). where orthogonal dipoles generally are not coincident as in Fig. S(s).

Att) Is the modulating sina, must be included in (10a) in this but they are displaced from each other as in the configurations
event. fo the result in (1s) to apply to the measurement of an shown in FisL 5(b). (c). and (d) 141. (51. (71. Each dipole in
amplitude mocdulated field with a thermocouple dtector, the Fig. 5(b) is mounted on a planar substrate; two of the dipoles
themal tune constant of the detector also muss he short com- make in angle of 4V and the shardl an angle uf 90' with the long
pared to the period of the highest frequency contaned in the uxi of the substrates. When the then substrates are combined in

Moduilation. the -Ilbeasn oniguratjon the diles ae orthogonal. In Fig.
5(c). the dipoles are placed on planar substrates that Are COM-

15DroiP Aoe bined to forts a lube whose crow section is an equilateral triangle.
Each of she orthogonal dipoles makes tos acute angle of 54.74*

Conider the Pnetal monochromatic incident field exprsed with the axis o. the tube. The threete of the orthogonal

*1N.

/ *1,
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* dipoles in Fig. S(d) awe along the lateral edge of a regular pyra-
mid wha barn Is an equilateral triangle. Each or tie dipoles
makes an acut* anglet of 54.74* with dhe altitude of the pyramid.

- add the handle of the probe is an extersiorl of the altitude. When
* the centers of the dipoles are displaced. as in Figs. 5(b), (c). and

(d). achi probe measures a field component at a dtffeen: poei.
tion in space. The three components can be combined to astL-ate 3

- the Hermitia magnitude of the field at a single point (14) only
* if the field Is assumed not to vary Over the Volume Of SPaCce ccu

pied by the dipoles. If thes dipoles at physically and electrialy
short, this volume will aiso be physicaWl and electic*f small.
and the assumption of a uniform field within the volume is

* justifiable.
When the electric field probe ia used in inliomogeneous mate- 6 U U

*riall medis. such as biological tissue. the normalized response of A
* ~~~~the probe I V,,, VI Ejs 12 may vary with position. For an electri- FWg.6. Nonmaird capacItaceof bar nIai"ttd stecalvshot d

cally short dipole, this vat'saton is mainly due to the change in the polle in mediums with relative diihlctri contrast a, A/& - 1 g. b/a - 2.3.
*impedance of the antenna ZA with achange in the electrical con. r2tA*/A-3.7 x 10-3.

attsutive parameters or the material surrounding the probe. The
variation can be reduced by making the antenna impedance smal
compared to the impedance of the detector (CA IoC in the 046DOW -

region where the resonse is flat) or by minimizing the variation in
the antenna impedance by insulating the dipole (111, (161.

* (17 1. The insulated dipole is formed by coating the antenna with
A Material whose relative dielectric constant ej Is lower than that

Ik of the surrounding medium a,. The impedance of the insulated
dipole is fairly insensitive to variations in the electrical param-
tiers of the surroundings; this is illustrated in Fig. 6. where the

capacitance of a particular electrically short insulated dipole is
* sewen so have lidte varittion with e, once e,/e,, Z S.

Ill. IMPLEMENTATION

. 1ynt"i - *ih b/DWi Detectors e.Deaofde ettrfrantieEta pb.

The basic dnign of this device has been optimized by the US. another lossy trantmission line connecting the probe to an elec.
*Nauional Bureau of Standards (NDS) I1101 for coverage over the tronic "readout box."

frequency ranges 0.2 to 1000) MHO. Square-law response (output The National Center for Devices and Radiological Health (for.
* voltage proportional to I '12) over the range from about I Vim merly the Bureau of Radiological Health (BRII)) and its cotitrac-

to 2000 V/m (rnss is provided by using electronic circuitry which tort have developed miniaturized versions of the above probe
compensate for the noniquare-law resporse of the diode detector using thin-film technology. The intended application of these
at high output voltage levels (greiter than about 25 mV). An miniature E-field probes is primarily for Implantation in hyving
array of three orthogonal dipoles. each of total lenfith 2h - I cm. animals or models used Ins biological effects studies (181. These
is used to provide isotropic response. This Is achieved by placing probes are constructed, a shown in Fig. 7. from a diode chip

-each dipole on af dielectric substrate, and combining three of the with integral beam leads and a dipole antenna of total length
* substrates to form a triangular support frame and handle, as in 2h - 1.5 mm. The conductors of the lossy parallel wire trans.
*Fig. 5(c). mission line are made of highly resistive thlnrlim materiel. Each

The use of a beam-lead carrier package for the Schottky diode dipole probe is mounted on a dielectric substrate, and three
* chip minimizes detector parasitic inductance, so provide a flat substrates are combined t, form a tube of triangular cross we-

nonresonant frequency response over a wide portion of the RF/ tion. as shown in Fig. 5(c). 1..e atroay of three dipoles forms an
*microwave frequency range. A high resistance transmission line isotropic probe. The tip of thes probe is encapsulated in a dielec-

(low-pass filter) is formed by a sandwich arrangement which uses tinc material. The substrate and the encapsulation serve as inula.
two flat thin carbon impregnated Teflon strips, with a resistance tlon on the dipole antennas and help to make the probe's re-
per unit length of about 4 Mfllm, attached so a ihii insulating sponse independent of the electrical parameriters of the surround-

*double-sided adhesive tape. This probe is used in free space for ing medium when the probe is used in a material with a high
-both radiation hazard measurements and for electromagnetic dielectric constant, like biological tissue.

Compatibility measurements, with a standard ihielded cable or Square-law detection of E-fields Wf accomplished by limiting
the RF voltage applied to the diode; this is a fortunate conse-

~ Aeom~erlettes. tobay sd~tree.Edia. N.hasadatad~, quence of making the electrical length of the dipole very small.
PAS dusigp by adding resistance so the dipole elemnts arid using a Slo other means of shaping the detected voltage versus RF field
packaged diode. The realtatdevice covers the frequencry msa. 0.5 10 6000 strength (such as the use of electronic circuitry, either analog of
bills. digital) are not necessary.

7-/
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The diodes in the probe are selected so that their junction
resistance R, (see the equivalent cicuit of Fig. 2(b)) is large 0 X
enough to appear as an open circuit in comparison to the antenna 4
impedance zA at llg radio freq ncin ll) 30-,,l The total "
open-circli voltage of the antenna V0c then appears across the .

blo 4. Since the antenna impedance is promarily capacitive (the
capacitance is about 0.1-0 2 .it increases with decreasing hre ki .
quency and at low radio frequencies eventually is greater than et
the mtode impedance. The open circuit voltage of the antenna is el
then dded between the antenna impedance and the diode or- g, eO"

pedance r and the response of the probe decrease% with decre.
frequency (the - 12 dB/ctave decrease that occurs ot frequencies
below win. s f4). The larger the value of the junction resist- j i .C
once. the lower the frequency r n at whfoh the probe reoeonse h f 0ftwr cla

begins to roU off. The juncton resistance hower, cannot be Y
increased indefinitelyo since the video resistance of the daVdeR. icesswith the junctioeisac (R. no- + R.).We wl
the video resistance becomes largie compared to the resistance of Fig. . E-Field pobe wih opticteltmetry systm.

the metering istrumentation R. an isuff hisnt amount of the
detected volta e V, wdl appear across the instrumentation. The Antenna dac i fo .
net result is that the "ahghtimpedance zero-b tes" diodes oraft,,,-medium barrier" Schottky diodes in the miniature E-field probe"n"

enough to produce sufficient bandwidth (low woe). yet not soSi
high as to significantly decrease the sensitivity (R, not large com-

pared to R)l Use of the optual detector dode provides a flat
fmequency response for the probe over the range from 100 inli
to beyond 12 Gil and a sensitivt) which enables measurement
of field strengths of a few Vime. (b)

The lossy transmis on line. which is about 30 cm long in this (ad
nprobr is connected to t telemetry system. This system bontans FS. 9. (a) Ateala imrnt formed fom thermoouple arry. (b) De-

preamplifir that drives an analog to diita converter (voltaneo toth Ot uh mocouples.
controlled oscillator); the output of the converter modulates a
light emitting diode producing optical data pulses (hat are irons- Mitz to 26 GHz 131, [41.5 In one 1.r-be, three antennas. each ".-
matted over a fiber optic to a remote readout. w~e Fig. 8 (191. being several centimeters long, art arranged in the orthogonal .'

Thbe wthdidedte channel el emetry syste n ihoused in tray shown in Fig. (d). For bwrad-bnd response each antenna
T metal cube with sides of approxmately 3 cm in length. Scat. s formed from many antimony-bisuth thermoouples (deie-
tering stroll introduced by the telemetry unit are less than about cots) distributed long a hrpin curve, see Fig. 9(a). ote that the
0.25 di when the probe is in free spaoe t hot junctions of the thermocouples Fig. 9(b), are fomed by
A recent paper describes a broadband (200 Kof- Gpio ) deirsasing b m e c the hande. A pae conductors; this increases the

probe with diodedetectos developed by a commercial firm 19 . electrical resistance and the power dissipation at these points.The three dipoles in this probe are each of length 2h , ;3.2 cm. The resulting antenna/detector of this probe ii relatively ineffi- -.
Resistive strips carry the detected signal from the Schottky- cient and does not perturb the field being measured. T1he low
barrier diodes at the terminals of the dipoles to the monitoring sensitivity is €ompenstti for by providing-8 low-noise pre-
ingrumentation. The broad-band response of the probe is oh- amplifier in the handle. A arallel wire transmission line with
toined by making the dipoles from resistive thin film and includ- tapered resistive thin-trim conductors connects the antenrnas with
Jag a shaping detwork at their terminals. Note that the dipoles the preamplifier.
of 6,4 probe are electrically long at the upper frequencies in its Each array of thermocouple elements in this probe is not elec.
specified range or use (2h Of 2.8 A0 at 26 GHz). Thus, unlike the trically short at the upper end of the freque.icy range specified
electrically short dipoles discussed earlier, the response of this for its use. Thus. this psobe will not necessarily give an accurate
probe will be a weighted average of the field over the length of indication of the electric field at a point, but a weighted average
the dipoles whose centers may be displared by a few wavelengths of the field over the length of the array.
at the higher frequencies. The primary advantage of the thermocouple probe is its in-

herent ability to integrate. via thermal means, pulsed high level
I. Probes wfth Thermoc,ouple Deftector E-fields. such as thoe in the vicinity of a radar transmitter. The

Several isotropic E.field probes with thermocouple detectors short duration of these pulses(microseconds) precludes the use of
have been developed for use over consecutive frequency bands, dipole/diode probes. This is due to the wide bandwidth of the
which when combined cover the entire frequency range of 10 pulses compared to the narrow bandwidth of the resistive trans-

4 eart Mk ,wcv Corp. Fanrasnsdae. NY 1I172. a Nasdl Microwave Corp. Hlmoppaai s NY 111788.
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mission line (low-pass filter) which must carry the detected sip3 in several studies to Infernsally probe living or sacrificed animals to ---
from the diode to the processing circuitry where 111tgrtion scertain the electric field in specific organs when the animal ks
would occur. exposed to RF/microwave radiation 1181. The measurement tan-

certainty associated with Use imiplantable E-field probe may
C PrbeswkhArhe~:e-io ~cdhyapproach 12 to t3 dS if the relative dielectric constant of the

Probes that have active detection circuitry at the terminals of medium is above S.
the dipoles were developed by the US. National Bureau of With the implantable E-field probe. an animal Is typically ex-
Standards (201, 121). A commercial system Is now avilaible for posed to electromagnetic radiation with a power density of I ao
use in the frequecy ranits 0.01 to 220 M~lz.' The Active dr.- 10 mWicnl. The 3 mm diameter probe tip measures the three
cuitry. a high impedance RFt amplifier. is used to properly ter- orthogonal E-field vector components at the selected site. In.
minate the short nmonopoles (less thtan 10 cm in length) and temnal dosametric methods other than the E-fleld probe hae
obtain a flat frequency response in the low-frequency Portion Of almost universally been thermal in nature, involving exposures of
the usable range. In this device, orthogonal rnonopoles are used to an animal to intense radiation (> 100 mW/cm 2). followed by
obtain isotropic response. The active circuitry, batteries and measurments of the temperature rise at various points in the
readout meter are housed in a cube with sides 10 cm in length. animal (26). The electric fied is computed fr" the tempera.
The metal cube also serves as a quasi-imsge plane for the ma- tisre ris by tising Use relationship:
nopole antennas, as shown in Fig. 10. The above system also in-
eludes a fiber opstic data link from the cube to the remote instru. SAR 12/ LT (16)'m-mentation. The fiber optic link is driven by a voltage-controlled A
oscillator and a light emitting diode housed in the metal cube. where
Good linearity, frequency response, and anterna patterns have
been obtained in laboratory tests of this device over the fe- SR Seii bopinRt Wk)
quency range 10 to 100 MHx (2. I El Hermitian magnutude of the internal peak electric field

DL Semannry of E-Fleld Probe Perforimmce Pansneg ers a Effective electrical conductivity of the tissue at the
Table I presents data on the critical parameters of the probes polrt of measurement. and at the frequency of the ex--

which were discussed previously; all of the probes use three posisre field (Sim).
orthogonal elements to obtain isotropic response. A Moma density of the tissue (kg/in5).

AT Temperature rise C)
WV. AITUCATIONS OF E-FIEt I) PROBES At Duration of exposure (s).

The primary application of E-field probes Is in the assfsnment C Specific heat of the tissue (JIkgC).
of radiation hazards. United States RIF/Microwave safety stand- From the above equation it is easily see that the measurement
ards limit human exposure pt frequencies vsinging from 300 k~lz of the electric field strength in a biological specimen using a
to 100 000 MHz to levela ranging from 0~ V/rn to 600 Vim th~!probe, as compared to a well designed E-field probe, is
(rm). Fo: most radiatlon-sefety surveys, a probe with an array much more involved and requires much more specific information
of three small dipoles Is used, since the polarization of the fields about the exposure and the electrical and thermal parameters of 4
being measured Is unknown, particularly for complex near-rseld the tissue at the point of measurement. Conversely, measurement
radiation situations 1231. The uncertainty of memufree-t for of the specific absorption rate with an E-field probe requires
this type of probe when all sources of error are considered can knowledge of the conduct kity and the density of the tissue.
apprach 12dB9 1221. 1241. £.fIesld probes have also been used to map the near-fieldl sf

* ~. ~ ~ ~ .b ~ ~.Ft/microwave emitat!it therapy devices, such as microwave aid
b~mnt t IRN".Famb69%MY 173. shrtwve istermysy~etn~uw totreat muscular and connec-

'C,'

.... .... .... .... .... ....



mAnism AN 34 M14t RLZ(TRiC WItILD taomS 717

Y ~provide slimilar performsance. The system shown in Fig. I 11b)
uses an Integrated optical modulator coupled to a laser diode
through a alnglaemode opticas. fibr. Such a modulator has been
designed for use with a 3 an lopg dipole (311. A flat frequency
response from onle to several hindred MHz is the design goal.-Kv with reproduction of the instantaneous (RF) waveform occurring
at a remote alte where this optica fiber is; coupled to a photo.
diode dettector.

VI. CONCLUSION

Electric field probes have been developed and used over much
of the RF/mlcrowave spectrum. Probes are commercially livael.
able for near and far zone isotropic meawetemenis of the. magni.
tude of the electric field both in free space as well as in material
media, such ats within living animals used in biological effects
studies. In complex near-tone fields, only those probes whose
maximum dimension is a small fraction of a wavelength can be
expected to give a reading that approaches the value of the field
0t a point. Radiation hazard and electromagnetic compatibility

- . ..,.,,surveys makte use of broad-band E-field probes which yield

Fig I) ta Etctrc iel mesurmen sste "sns locro-ptce iromeni. ewtechnologies will improve the performance
mouatt (b(nenlieae pia o-lao.adrdc h ieo -field probes and will enable them to be

lvtiseinjuries) and microwave hyperthermial systems fortF~RNE
cancer treatment [271. Measurements have been made of the in- III C. L.. Andrews. ~Diffraction pa ters insa circutar apeirwa aasmd i
dividual vector components of the Efield which lie in a plane the MicroaVC efgboe." J. Apsil. ?Aju.. vol. 21. pp. 761-767, Avg,

paalladvery close (S to 25 Ism) to the aperture of a dia. 1930. ltaigeicrsuopn arewri

thermy applicator 128). These results are used to predict the mesrmet MKW- freiuqseares:- J. Msc-evirv Poer,. val.
*relative efficiency of the applicator and the pattern of energy S. pp. IS$- 174. Nov. 1970.

depoitin i plnarmodes o th huan issu. 11 E EAsin. Etrctrmal~no rodistir.. survey meer.- IEEE Team.
depoitin inplaar mdel ofthe uma tisue.f~jfmw eetVol IM- 19. pp. 3-72. Now'. 1970

Another application of (-field probes is assessing the eletsro- 141 -* 'ada-os isotropie electromagnetic radsi... ..awr.**
magnsetic compatibility of electronic device. For example. E-field IEEE Treni. Inst.... Nees.. vol. I-2i. pp. 421-424. Nov 1972

*probes are used so monitor the field strengths in the proximity 151 . It. boma". -Sxnse feccat dovelosomrsi ini the chucwaricatio ad
nieterece. meursaement of hasardoms electroagneic rfiots. is b.ilgics# Es'

ofelectironic devices which are susceplable to RF iiefrn. lects end Helth 1siedoi of Nfter"Wr, gedamne. Wasw Putas.
s uch as sensitive medi'al monitoring equipment (eleacen. Polish Medieal Pu~blisherv. 1974. pp 217-227.

11F oes.Deveiopmew of electic ad magnetic star field probes."
cephaloguaphic (EEG) devices). NtL Oucr. Stool. Tech. Note 656. lon. 1915

171 H Batan. M.Swic d it. Abits. *A miatature bradband elec.

V. FUTURE ADVANCES IN E-FIELD PROBE TECHNOLOGY grit field preh.- Assets of W~ New. York Ac.denoy of Sciences. 8,.

In anl effort to reduce 'he size of the three-axis implantable loialQe fsoNioianrt Rudiation. vat. 247. pp. 491-49). Feb.
pwcbe. a dipoleldiode integrated circuit is being developed with III Ht. fiss. W. Hermss, a"d a. Hoss. "EM probe sub fit opic
individual dipole antennas of total length 2h - 0.6 mm [291. aeknueiry." MorroweseJ.. vat. 20. pp. 33-39. Ape 1977.
Special techniques are being used to produce a diode chip that is bighs.Motlrady ZpAdbe. IEAE Trstir.ad Moss. vol -29. pp.electrically and mechanically compatible with the electrically 44.hc51,iss e . 0. n amw.U...vt M-9 p
small antenna. The production of an isotropic probe containing 1101 E. a. Larsoni and F. X. JIes. -Desiga and cat.ibrat ofite NIS

isotropic eleciricefteid monoier (EFM-58. 0.2 to 000 Mlii.*'a. Bar.three dipole% with an outer diameter of 1-2min is this program's Sued Tech Note 1033. Mar. 1911.goal. 11R.WPKigadGSSonih. Antenas on Maire e Fsoldtenril.

An electrically small dipale may be coupled to an optical Thor and Applc.Iotto. Cambridge. MtA: M.I.T. Prss. 1921. eh.

modulator so that the RF voltage develored by the antenna 1121 A. titr. Jr.. "haraeierisasioo *("leidodes for low-evel* .-

causes a direct, instantaneous change in the amplitude of a beam wave detectlo. Uocooevire J.. vetl 6. pp. 3%47. Jot
of light passing through the modulator [30). set Fig. I I(&). This 1131 H. A. Wilsn, Micro~,. Sesticee4arae, Dee ther, Apous-

roots.Nci Yoi.McGraw-Hill. 1969. ch.. ;2
passive technique provides isolation of the probe's antenna, just 1141 G S. Siths. "Anssauo frlm aveetric room probs wih reaive
as the high resistance lossy transmnission lines do in present E. irassmtmanse." IL teas. NMcrowowe ?er3 tch . ,ol IMT-
field probes. The optical technique has the alditonal advantage 29. pp. 12 13-1224. Nov. 1" 1.

tha I aln rovde a er fat esons tme lea tanonecyle 1131 P. F. Wacker and It It Bowman. "Quasityea b~auedcus eena.
fhti lopoie eyfs rsos ie(tsta n yl magrohloc fields- Scefv,,rtc boosis and practice-i cook .s. IEEE£
ofthe RF field) and phase meawurtme.-t capabilities. The losy Teans Microewae Th~eory Tech v ol MTT-iP. pp 179-ia?. Feb

tasssiaon line, with Its inherent low-pass filtration, cannot 1971.
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1161I 0. S. Swift. "A am*-- of .le--lafIY Ame OFt 1 9 istaam Heate 1. Bomm 0 f477S 1i rem.od dae
prale or meauring sie ea nd I fmq-inc almsee (ill is boalosa. B.S E E degree loo n Usivarit of Matnlaad.

e@# ayas~m. iEl l .room .j 1v aPS.. vol. IIML 22. pp. 477-493. Collere park. is 1965 trin O h 19 s. 1970. be
Mae. 1975 Completed a Vrit of gredusse cowesta Ia satcn-

-I% ew acl-Ilal proe a- a mamall -d-rac wd Cal aagssivenag at Gege Washoapom Univerity.
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Directive Properties of Antennas for Transmission into a
Material Half-Space

GLENN S. SMITH. h ma est. 'an

Abstrrae-The direction progees of souroesa. Ove 1roeoka Isoa alN
mxaterial half-spoe, are 5e~g Isd ta practical attamal.. td o .
am mih b.' ,et- Is ate wit the itveo t&amamblOO Wa.e mrshS.
The room o a1 geeal as m am of . aepre nop asmd a
opetrpo of plane waves. Tfhe tiaewle reprewottg te fiear e somast

asy"e s~ amtteato obtala A*e --gmarlat opks' lieN of the 7
altes". and this field is need ia doneliqatwthm that describe the
dlretls peagertiet ad the saaus eaattere fa"ma. trala. a"edirvitiv-.

lI. %loseelttal ea are preo*WWu te hoalent"a oeerh sad meg y h
m itt a llaa dise aanemane in a dteiro etf af4poce. region 1. with Z

directive tftmmaueieo lose the adjacent dielectric halfseat. real 2. Mes G.% 0
and lb.1 ratio 0t permt ites 9 are I greater 411111 e~. Tbe theory Joe the -"~.-

inflakeeuba dipolet competety, eaphalaa te directiot Properties P-1-I ClXi

matsy Obetaed for th esoanat eirhetr-loom cee"aa over a maeril e

* .AS em ant an Iatte hetote b e ar sod freeb wales are In good agee.
inam wish the theory.

zI

1. INTROMICTION

T'FHE ANTENNA radiating ins the presence of a mater's! half. If..
£space has been dhe subject of extensive theoretical investiga- Fig. 1. Geometry fot anteaa oer interface.

tion, beginning with the famous results of Sommierfeld in 1909
II.The cases treated in the literature can be described with minology may be somewhat misleading as pointed out by Schel.

the help of the drawing in Fig. 1. Here, a general antenna is lo. kuf 3.
cated at a height At above the planar interface separating the Theof ea131. iaoso ti rbemcnieedatna
homogeneous material half-spaces. regions I and 2. The elec. (usually infilntesmal electric and mainetic dipoles) in air (region
tricaf constitutive parameters for the regios are the effective 1) over a planar earth (region 2). with the application being to
conductivity a.#. the effective permittivity a.,. and the perme. radio wave communication in the atmosphere 141. 151. The field
ability Air on ft(Doth rrgions. i l. 2. are assumed tobe norimag. in the air, both the space wave and the surface wave. was of pri-
netic). For a harmonic time dependence el 'the complex wave. Mr neet h ufc aefrti ae hc a h s
number and the complex wave impedance in either medium are mayitrs.Teufae avfothscewchashes

ytnptotic behavior 0(110r2,' has been referred to by Wait as the
it, o of-lei - w(taOIX)'/ 0,~ >Ia) "Norton surface wave" 161.

CA = ~.(E~'~.(Ib) A second case. which has received considerable attention. is
CA se us Vb) that of an antenna in a highly dissipatiie half-space (region 1)

where 11 = ,(] - ilit') with the effectise lOss tangent p,1 - with the adjacent half-space (region 2) usually being free space
171. 181. FNr example, the antenna may be on a subimauine boat

The electromagnetic field of the antenna in the presence of below the surface of the ocean. For this case, the field near the
the half-space is conveniently discussed in terms of its asynmptotic interface is usually of interest; it is described by the so-called
expansion for large radial distance (tam kip - so). In either me- lateral wave," which hat the asymptotic behavior 0(lkYs).
dium, the leading trn in the expansion. which it Olexp (-j)I The case contidered in this paper is that of directive transinis.
kgrJ. is referred to as the space wave, this is the "geometrical op. sion from the antenna into the adjacent half-space (region 2) by -

fics" solution for the field 121. Near she interface (angles near means of the space wave. This case has received little attention in
0 - /2 in Fig. 1). where the "geometrical optics" solution is zero. the literaturwe.evens though its mathematical description is straight.
terms of 0(l lk?,') may be dominant. These terms, which a.e irt. forward anid often less complicated than that of the surface waves.
portaint mainly for representing the field near the interface, are The reason for this is faily simple. The space wave is exponentially%

* often generically referred to as surface waves, although this ter- damped (esp (-*?r)l when the medium (region 2) is dissipative'.'
this limits the radii with useful field strengts to impracticably
small values for manry purpoves However, these are applications

5tamsiP' Ser"ve Itaih 3. 19113: revited October 14. 191. This with antennas used to tansmit a signal into the adja.ent half-wOeWet 0 11Spported In poet by the Joint Services Esectfonics Protram un-
de otat AG97<4SodDA24.-04 space &I points directly below the antenna (polar angles neare =

roeO ehnlgAtei.G 0 3 1 '. myb sdI oruiai ikwt negon unl

...............................................
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or to transmit and receive the sipals used in a system to detect daij
buried objects 191. Whsen she dissipation in the media is not ex- i
Cat vel. "M spae. wave can provide a useful description of the .a.
antennas directive properies for these applicaitons.

The awabitofl for this5 work wait a recent iisvestigat~on by I
the author and An of the directive properties o*(horizontal cr-
cular-loope anenaas over a material half-space I 10). 1111j. That I5- AIR I &
study showed that a loop in free space over a material half.
space could have a daiers Wel pattern into the haslfaspace 2 - WATER I

when the 00 ib clase to the interface and nest resonsint sizeI
(the circumference of the loop approximately one wavelength in
free spacet). The directive properties of a niesonama loo in air ov.-r
fresh water are illustrated by the theoretical and exrperimental se. O

suits presented in Fig. 2. The electric field Fatterm in Fig. 2(a)
are for an tislted loop in air (dashed line) and for the same loop9 sotv LOOP OVER
in air over fresh wvatet (solid ine). The quantity r'Iit I0 is .. EXPERIMENT lRF~
graphed; the exponential factor ia included to compensate for the 110,1101111. LWo IN AlA
dissipation in dhe water.$ The nearly circular pattern of the iso- (a
lated loop is seen to change to a ditcegi- pattern into the water
when the loop is placed over the interface. The relative gain of
die loop far transmnission into the water G(f = 0). as shown in I's
Fig. 2(b). has a peak when the loop is close to the interface.

hl u Ot.075. The peak gain is about 60 timrs the gain of Joe iso. as a XtfREO

lated loop.
In this papet. the field of a general antenna over a material

half-space is expressed as a spectrum of plane waves. The resulting af

optics" field. and this is used to define quantities that dcscribe

the directive properties of the antenna. Numerical results for In-
finsitesimal electric and magnetic horizontal dipole antennas are
provided as illustrative examples. The theory completely ex-. I
plains the aforementioned directive properties of the horizontal 0ea

circular-l-uep antenna over a material half-space. L L A . .

(b)
%If. SPLICTRAL REPRESENTATION FOR TIlE Fig. . Duirecti propetine of resoanti circular loop antenna tgos -I DO

ELECTROMAGNETIC FIELD amw mnterlace. is) I teld patterns for oiatai loop in air aned for loop in
am ever fresh sialer. A/4 0 07S. per - S.) x 10-2. The pattern for

The geometry lo be used for the antenna over the material the isotated l"o is a fat-rowe patlern: ihoe fit the loops oae watts
* half-space is shown in Fig. 1. Two rectangular coordinate systems are for the radi tkg - 5 65. (b) Retrieve pain foe lImp in ir above

are shown: the unprimed sy stem U. y. z) with ofrigin 0 on the in - feshI water at a fuanction of the heffri aliove ihe interface hit4 . The
terface and the pimed system (z% y'. z') with origin 0a on the an. theoretical resuliasi tor lositt-u mnedia, white the esperinsenlal remults

*terns. The antenna is encloed by the two plants at: 6.. -6 are fo P'3 .) x to - .1
4: - -A + 6.. -h - 6-.): these are parallel to the interfacial

* plan.:Z' -Ah (z -0). as aspectrumn of plane wates.3

The spectral analysis is based on a l'nowledge of the incident
* ~~~electric field 1,(zi. s)an the twoplan.s enclosing the antenna, fha()J~(~

x Mr18. The incident electric field is the field of the antenna -

*I when it is isolated in an Infinite medium with die electrical pirop. *exp(-I' .dA. (2s)
cities of region 1. and the current distribution in the antenna is-
taken to be the same as it is when the antenna is over the half-. ,. * - I, - *
space. For the analysis presented in this section. the incident elec. zI(~.2-~j j dA()-rA()
itic field on the planes enclosing the antenna is assumed to be

* known'. it will be determined for a few simple antennas in Sec. .exp( ~~dK. (b
lion IV. 

(b

where sIX - rIdk,,. Here, the plus and minus superscrIpts refer
A. IsirlaiedAttrevena, to the fields in the Fregonsr* al6. and:'- 4- - respelivelY.

The electomagnetic field of the isolated antenna is expressed

5The eitaus of the tixetral assul) u ate omitted here, and oniv the
roat revutti ate .tflasmail. A dig.of athe pens-rAt pfrsedars- a in

I The definona foe the tield part -en anshe pain of an antenna over a several ters. 171. 112 1. and It131. The vnvainr asci is trtiayhty the same
141ali-1p,,e are edscu,,ed in 5.-shun Ill. an thut in the meifigrapli by li-in 1121.
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The eomponents of- - W =t unto taeA
suki parallel to the Plane of Inciden". vu,. id. pling foamcd
by ther propagation vector 1, sad '. Slid AiL which ka normal to k
the ph of incidenc:

lbe spectraj-denajty function is deterinined from lte tangential
component of the electric field on the parallel planes enclosing
the antenna. iE(X' . Z' - 0d,). Fromnthde formula for the in- X.
verin two-dimensional Fourier trno~m and (2).

A1(A) ifL
4 FIF

* * ( X EFA(z Ay~ Z 8) e dS', (4b) Itosibt" wave Wtrs andit irectnj.
what dSu dxdi.

* .i-The pbaitewave propagation vector is 'e, in region 2:

* with the tranwsverse component 2 ,(~ 1 L4~ ~LA4I~

£wA..i+A,#. H Wki~ 71o .Iph(~-iid* ZrO (9)
From the relation -

it follows that 4w

71p(6a) *exp l-fh (K)b -t,4jdK 0) . (10)
where the branch of the square rool is chosen so that The reflection and transmission coetaicients in the above equa.

-F .jK) (6b) lions ate obtained by imposing the boundary conditions at~-0:
*when k, isteal and K3> k..
- - The unit vector% in the spectral-density function (3) are R,(K) -t1i - &170/0171 + 0112a)

-, 3i R,(X)-(v 7  3)1:(71 +T2) (11b)
7d, % UK) 2kI (7s~x-ak,,Akj,..a ,)(I)

Note that a*is. in general, a complex vetor. whereas Z, Is always T1(K) 2 -y, + 7j). (12b)
A real vector when k, and *7 are real. l3oth 1, and ij are orthog.
of"1 to the Propagation Vector it. The geometrical relationship The propagation vector for the transmitted field is
between diete vectors when it and it are real is shown in Fill. 3. i, A+ -,,(X)I. (13a)

£ .Itu~m~veri.45ecwwhere
The electromagnetic field incident on the interface separating 1, f j (13b)

* the two material regiost is the field of the isolated antenna (2).
After a change to the unp.wned coordinate system (. y.. the and
incident electric field becomes 70() V 1-~-A f 4k 7 j(K (14a)

~ if ~The branch of ihe Square root in (14a) is chosen to that

~ (-i; *)dX (8) whe At Is real and KI >A,.
The unii vectors used in the expressions for the reflected and

the transmnled fields. (9) and ( 10). artThe incident field Interacts with the half-space, region 2. to give
rise to the reflected field 4in rgown I and the tranumitted field & j 1

7-A:
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hthe dawsooa 4 -k -S &_Iketotalried is is the hcdent sip 1Asksar +4k i5a n h))
*fieldf phftthe reflecedfield E_ andin the WOnOD >02th
* ~totlfield E3IS the tranarnitted fleld Et: It s 119T(,)(j 2

+1xyz +;T5(x 2).4,(JR,S)J. 0 4 0< s2 (21)
sfg with

-~ j (I~jK~ei
1 ~+R (k() k, Sain ev os 0 + sin #I (22a)

C-13 0hAidksSn9. 1 - 1.2. (22b)
.el~(X~J +~iAX~e~i(~h +~(K4~KThe reflection and transmission coefficients (1l) and (12)

(16) evaluated at the transverse propagation numbers Kit and K,,.
)Aj)ea~ -1k ) 4. z 6.. 16) respectively. are simply the Fresnel coefficients:

(23a)

Al, bos~l+AI,-in 0

Equations (2a). (16). and (17) are integral rep.restntations for
- the electric field of the isolated antenna and the antenna oser the 7~4) ~ 2 f ~s

half-space. For large radial distances fromn the antenna flirnhAr iCos l + %f4aa - (24b)
.- -). th-se integrals can be evaluated asymptotically by the saddle-

point method of integration. The technique it well documented whreo ka, I Ilk,5 2 A~/A 1.
inteliterature and will ntbe described here 121. 171, and Il.DSR I704OFIECVEP PRTS

1141. The leading term in the asymptotic expansion. whi.h isl.DSRPINO DRCIEPOETE
Ojexp (-jkrikir)I. is die -geometrical optics" field. and this For directive transmissions into a material half-spaice, one is pri-
term is a valid representation for tIe field provided the point of mnyitrteinaensthtcseitrate the electromagnetic
observation (r, S. 0) is not near the interface (8 not close so ir/2). field in region 2 at polar angles near 90 and minimize the

The "geometrical vpws** field will h~e referred to as the far- electromagnetic field, or power radiated and dissipated. in region
*zone field and indicated by the superscript r. e.g.. e(r, a. 0). 1. The greater the concentration of the field or the pin is in the
* The far-zotne field for the isolated antenna is direction 90 . the greaser the depth of penetration in the

half-space is before the exponential damping leapt- -ar)J reduces
**. , ~the field to an impracticably small value.

0')- At Ics In this section. quantities will be defined that describe the di-
2x I. rective properties of a general antenna ownr a half-space. For the

most part, these quantities are simply the familiar ones used to
+ (IS) describe the directive properties of antennas in free space. modi-

* withied to account fortshe fact that there are two material regionswithand that these may be dissipative,
is, k, sin 0'' co;s0 +5 ;' in* (19) A. Field and PowverDensityattens

and the far-zone field for the anmenna over the half-space is The directive properties of an antenna in infinite fee Space
i;(I!..,) -are described in terms of the electric field osr power density pas-

tern. The electric field pattern function ,. 0 . 0) Is obtained
-~ .. latfrom the far-zono or "geometrical optics" field:

2sr se Ics9(sgA(iiolahtn 0, 0,). (25)

where the firee-space waveniunber ko. is re.:I. The far-zone field
.- +,Rd(K..,H;.(Ai,.)4Iathio..11 pattern is a graphical representation of a ve-. component of

while the (ar-zone power density pattern is a graphical rep-
+ 9Ij(A. 1 ~IAt~iesS R1 A~5  ~ eselation of the function

-#a JA 1 . '22< Ca (20) IlkreA. is the comnplex Poyntings vmoor itn the fat zone, Re sig-
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nifius she sal part. avid the magnituede synibol indicates rte Her- and the case with cegirst I and region 2 both losaleas (ce, - 0.
initials magnitude. i.e.. IA I - (A-A)i Both kild and F,0 are .2- 0).
independent of P. Whens reffion I Is bmius and the antenna is also lossless. tht

For the antenna over she hatf-space. either or both of the re. time-average power input to the antenna Ps., is equal to the totl
gions may be dissipative. and the definitions (25) and (26) must timie-averagle power palssa outward through the parallel planes
be imodified to accounlt fur the ressrring complex wavenumber at: z -h + 5. and: - -A - 6-.:
and complex wavt impedance: , r( -A+6) (z=A- )(3a

&0 ) 'Ok..G. =) (27) wish

F19 0 ~ R I~'9.) 1(5 1 Re Iie(..: dS. (32b)
- Re UdlF,(G.0)/2 1ril2  (28)

where 1 1 . u12 < 9 < a:1 i 2. 0 <(9 <uw/2. The exponential and dS -dx dy. After iserting the spectral represenitaston (,r
factors in (27) and (2h) compenwat for the damping due to dis- the field into (32b). performing the spatial integration, and con-
siparion and inake both k, and I, independent of. siderable reduction, the two comnrenits of P,, become

It is Imiportant to note that the power density patterns ob- -
tlled (trn Id) may differ greatly from the electric field pat- P* - +8.

two regions. I and 2. are very different. Apias. fromn the squaring 71J*1( R 2

of I lI in I 28). this tsea ~osqis~of the wave impedance fi(I_.
appearing in (2b) and not in (27). I-or example, consider the case
when both miedia are luw-loss dielectrics (o~ w 0.1i = 1. 2) and +i 2

'-ei~ A
el= to I fret space). er,, = t,1/e0 = 8 (water). The real wave 1 1i If ~ 11I A Ia

impedances fur the two regions are t,= to and r'2 = t99 The 94
puwer density function in refrion I is F, - We '2. 0 and that in lm(R~e- -' ")+ IA ' 2 RA~~ t  d4: (33s)
region 2 is F, 1 1F 2ro. Thus, in converting the field pat.
tern to a power density pattern. apart from the squaring of P-, (: - -h - 6.)
the gfaph in region 2 (water) is increased by a factor of nine over
that in region I (free spacel. - i I ils 2 +R A~

a. GainS*I 5

The gain of an antenina in infinite fretespace is + 2 Re(VIA AI-e- 2 116) + IA_ 13 + IRt J' 12a
4ntr 2 . Re ISI('. t, 4)] * (2e- *11 hR(~iuC I)] dK, (33b)

where fin signifies the imaginary part. When the integrals for P,
where Pill is the tune-average power supplied to the antenna. Noie adr 3a n 3b.aecmie n h obeitga

-lia th gan isindpens-ruof he adia ditane,.is cotsvetied to one with respect to the cylindrical coordinates
a he definition (29) %idl not suffice vhen the antenna if over a

halfyspice and tither inedi-rn is df:wvpative. In this case, the nu-
merator of (29) will contain the exponential term exp (-2o,r);
iherefore. the gain will not he independent ofP. A similar prob- p 1 7 ' K'(k/Z (4)
lens exists when the gain of an anwenna in an infinite dissipative P,. for region I lossess. becomes
medium is considered 161 115t 1.he following definition. which
is independent ssf P is proposed for the pi ot the antenna over ki ,I Ul 2w
tie half-space: ~J~ fA 2 +2i

Pill,+ 2 Re [(R,01 AC + R1AAAj vl ij~diPdp

(30) -2 If Ii11lA;I- m (R)

where I- I. - *2 < 9( 4 Wi 2.0= 2 0 </2. The pin in the di.
iemton * -' 0 is of orinrar) interest: after inserting the spectral +A 2 (S
representation for the field (21). ii becomes+[:I mR)e1TlpjP_(S

G~f- 0 -t I 1 3 1 + 13(31) Note that the spectral densities A, and A, in (35) are functions

ofpad0/hl tadterflcincefcet ,adR

lvo ~ ~ spca.ae l fitrs-tecs ihrlinIlw aefntoso ny

few~~~ ~ ~ ~ .- - - - - - - - --natna.nfe paeoe tetih. %bl bt eiir w 2eeAulsad~eivt In th i.
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seed.. 0 -Sa be delLd for IMe antenA; it ba equal to the The -pgeouaese npliaca .rair uone field. as previously men.
pin: ionod. bs a useful description of the antenna's directive proper-

4.; Re ka(.* nO)1 tie htheorda hwow low (&p.,41. 1. 2).In thisain.
w 0)- stnce the reflectins and the transmission coefficients (23) and

Re #.#)I dG(24) are primail determined by the dielectric properties of the

media (srjate e ,3). and the exponential damping (disspation)
- ~experienced b_-e - we propagatin In the space between the

it?__ 0_1_ antenr.a And the interface (-h + 8. 4 z 4C 0) is negligible
ufa0 + A' ka a)Pis xp (-elk) a, 11. Thus, foe media with low low., the expres.

The er iput ~. ~s (6) i gle. b (35. ~ ~ slona for the electric field (20) and (21). apart front the exlpo. N
limi onthesecod itegal n logerw. Fr A >kR. nentiall factor Ileap (-jk~r)l I cap (- ag e approximately the

liiandR a bot inal a nor loge 03 thor ke t > uppe l it.~ same as thow for losslessnmeda(&~I .. 2). i.e.. the pat-
2.Ftk 2 < .R 1and R are both eal foep0> Itsj this makes teuprlmt0- tern functions (27) and ('18) are approxunstely the same an both

the. uppe k3n < &g R, and the ale bofthre aecn fonte>a thmaes cases, Thereino. a useful description of the antenna's directive
fore, uper.mts n h au f h eoditga.tee properties for media with low los, is obtained by considering

fure~zero.lossless meduta? and only the case of jossless media with k2 I > I
IV. NUMERICAL RESULTS A"~t DISCUSSION will be discussed in detail here.

The spectral-density function Af) must be known before the In Figp. 4 &ad S. fat-zone electric fild patternsfor etric and-
electric field or thse gain for a specific antenna can be computed. iapaetic horamWta dipoles ate shown for Iosslei% media with the

Recll ro (4. tatshespetrl~dnsiy uncionisdetrmied ratios of wavenumbess k2, - 2 (ez2Iee, - 4) and ki - 8*.%
Relfro(.ta the inidnpeecrctreldensiy functon isthermplnes (ej,,Iea 80). These two values of k2* roughly correspond to
from the inidn elcti afteldna. he zn oen the paesd the extremes of dipoles in air over dray earth and dipoles in air

(z t, encloingi te anen.Teicdn il smel over fresh wase". In each figure the psetni ior the electric di.of the isolated antenna with the current specifiedw t be the poeaetamtepln*.rf.a2nslln.erhg
as that in the Antenna over the half-space. alpne .ewheserassfotemget.dpeae

Antennas formed from thin wires lying in the iaorizontal plane
z- 4A. such as horizontal linear and lo;Dp antennas, can be ap E nsepae9 . n LIi heotooa ln-

z12. 3*12. Results see sho.wn for the drpol rs &r three heightsproximated by a current sheet for computing the electromagnetic above the interface 4/h, - 0.35. 0.1 and 0. Note that all of the
7 fie~~~~~~ld. The surface cusrrent density in the sheer is K* for an elecitic patrsgeaktohvamxiuelcicfldfonui.

current sheet And K. foe a mapnetic currenm sheet. For example,. atrsaesae ohv aiu lcrcredo n nt
the horizontal circular-loop antenna discussed earlier can be to except the rst most graphs an Fig. 5 which have been scakJ

placd b th eletri sufac curentdenity , I9)6p - with the factors indicated on the graphs. The unusual shapes of
bl) . where j is the radial distance on the plane: 0. these field pasterns waill be explained by comparing the far-zone

The ompnens o th spctrl-desit fuctin A an A, field of the isolated dipoles. (48). with she far-zone field of the
are easily computed from the surface current densities. for the dplsoe h afsae 4) 4)
*ecreccurrent shr The- far-zone field.i region I is simply the superposition of

tlae field of dea isolated dipole with the field of the isolated di-
a' = ft TA> (7a) pole after teflectiun fromn the half-space. For example. for the

AaK (37&) electric dipole, the component I i'l I in the plane 0 - u12.3a12
2Is

l-.-)E -w (37b (' 0) 1 - ito8 W1241610060 III~e allE#(.G)I. (39)
2v, 11 where I i I it the field of the isolated dipole. The exponential

and for the nmigariw currensirrer factor in (39) is the phase delay due to the round trip of the
waves from the antenna to the interface. In Fig. 6. the amplitude

* A(X) ~ R..S(38a) and the phase of the plane-wave reflection coefficients R, and R1
* ~~~ d$'j1  K,. are shown as functions of she angle of incidence 0' for the case

-v~ &21 - 2. Sitke R, iipoitive fur angles neare I - I (anglesof
Incidence 0' in Fig. 6 that ate less than the Brewster argle 4 jft1ji (34b) tan" (11:31)). the amplitude of the back lobe of the pattern (the
lobe in region 1) will be minimum when hfls, wr 0 and oscillate

The exact cuarrent in the antenna or an approximation so it with increasing khA1 . having the first maximum at h1X t 0.2S.
can be used in (37) and (38). A discussion of the analytical This behavior Is clearly illustrated In the field patterns, and it is
methods for determining the current ia the antenna over the mstby pronounced when the ratio k3 Is large. as in Fig. S.

-phal(.tpace Is beyond the scope of the present work, detailed For the magnetic dipole. consider thme field component I"Of* I.
analyWs for horizontal linear and circular-loop antennas are in the plane 0 * 0. w:
in references 161 And 1101. respectively. Only the simplest cur. lito.t - I) I + NR(K,ahlieeitI E.(r.9);w i. (40)
tent-sheet Antennas will be considered here. infinitesimal do-
Pole Antennas. The retults for these radiators are indicative of
the irfectIve properits Of maore complex radiators ow.,r the
half-spave. The far-rune fields. (20) and (2 1). and the dire..tvitics 2 Thiis puma e ilivrtwused III iirecift res fr thte ciecvtav4oo evi-
(36) for the Infinitesimal dip-Acs ate obtainted in the Appeafdre. tan in 1101 sow IlI .
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FigA 4 lectuc fitid patterns for dipoles Ot varietas heights Pik, above interfacir between louless dielectric media. kzsl.

Thii is the same expression as (39) for the electri. dipole except c~omponent of the isolated antennra with the propagation Vector

fo- hnei sign. -R, is replaced by +Rl. The amplitude of i, - K,2 z 1 A 2  The longitudinal componients?,1 and -13 of
'the back lobe in the pattern cf the magnetic dipole is seen to oscil- the two propagation vectors are relatdi by Snell's law:

late with increasing hl-A,. but, unlike the back lobe for the edec. (42)

trlc dipole. it begins with amaxuim at h/As ft0and t:-#h flirst 1Ix 2 '~( 5 ) k 1 .-.kj

minimnum at h/. bto.25. 1Ihe S. the angle at which the field in region 2 is evaluated, and

The owdilation ins the amplitudc of the back lobe with incre; 9 0. the angie at iish the field of the isolated antenna is evaluated.

ing hAt. observed for the dipole antennas. is characteristic of all are intrtoduce..(42) takes tie familiar form

current sheet antennas.4 The back lobe for hfltt - 0 is a mini- kIun .0<6
mum for electric current sheet antennas, and a maximum for mag. t. sin (43) 9)
neII current sheet antennas. This behavior is simply a result or j .2 +icosl-s (Ak suIa 0).,8

die symmetrie% of the electromagnetic fields. or spectral-density
functions, produced by the two kinds of current shets, where Or - sin'(i)sth rtalngefrpogtonrm

The far-zone field in region 2. the transmitted field, is *he field region 2 to region 1.

of the iso'ated dipole afier refraction in the half-space. C'onsider. Fig. 7 is a graphical representation of slit relationship between

as an illustration, the field component It',, I in the planee0- the angles 0' and 6 (43). or the longiiudinul comtponent5s(Kj

*12. 3412 for the electric dig ole. or the same component in the and 72(K$2) of the propagation vectors (42). for the case of loss-

plane* O 0 a for the magnetic dipole: lessamedia with k .Ihefr'ic rnmtedfeda the an-

gles 0 4 0 < 0, is seen to arise from the refraction of she spectral

I Adh.(,) I T60:12) components for the isolated antenna that represent propagating
IiK, 2) waves in the direction z. s e,, waies with 7,IA,,j)1kI a real num-

Cep (-I lmt,,(A:,;IJ Ih) 1f(,). (41) ber or 3 < 0' < 1/2 Whle the far-,one transmitted field at the
angles 9, <9 0 u/2 is seen to arise firom the refraction of spectral

A spectral component of the transmitted field twith the propa- components of the isolated antenna that represent evanescent

Visul vector +r - K 2 y(A,5)i is seen to arise from a spectral waves in the direcison zIe. II Ka~ a pure ,r'agnaiy nuns-

4Ifle, the current duiributiom in th anlan aswn ,1d o ra chng sotated antenna produces the farryone transmitted field wihin

..... ..... .... ..... ....
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Fq5. Electric fied parsIcra deposes at variocult hi I ' above interface between boiscsielectric media. 42, 4.94

Ure.2 a~ 60 0). Note charite in scale for Eii of maginetic dipole.

zone transmitted field. 0. <9 0 <v/2. is due to the evanescent 0 4 0,. Fot the two Cases in Figp 4 and S. the critical angles are
spctrum of the isolated Antenna Or - 30' R?, li 2) anti 0, - 6 42* 0k2 1 4

The relationship (41) between the far-z~inc trantsmted field The seqi~ene e f patterns for the horizonta, magnetic dipoles,
and the far-zone field of the isolated antenna contains the trans- the patterns on the right of Figs 4 and S. show less variation with
mission coefficient T, in the factor (i!-pT. The ratio v,-, the height of the dipole, h1. than do the patterns for the c'ec-
accounts for the change in the density of 0ct spec tial compo.nents tic dipole%. Hlowever, the patterns for the component of the field
on refraction. In Fig. 6, the amplitudes of the transmisson coef- I f'# I have an interesting cusp at Angles near the critical angle 0,
ficicists Tj 7 and the factors (-y2y,)T.-6 2Iy, )T are shtown as it is most p~oactunced when the ratio k21 is larli. as in Fig. S.
functions of ste angle of transmit-ion 0 for the case k~,2 . The cusp is due to the factor (?1,),it the expression (or this
Note. when 0 > 9, the transmission :oefficients are for evanescent component of the field (4l); it is clearly shown in the graph of
waves Incident from region 1. The expernential iscior in (41) af- (-y21-y)Tj in Fig. 6. Tliephysical explanation for thecusp is tha
facts only the parsion of the transmitted field (e, < e 4 /2) that -in refraction the spectral components of the isolated -ntenne are
arirvs from Zhe evanescent spectrum of the isolated antensna. redistributed, their density being increased at angles neat the

The shapes of the far..one patterns foi the transmitted field. critical angle. The cusp Jura; not occur in the patterns for the
the field in region 2 shown in Pigs. 4 and S. are now easily cx- electric dipole, because the electric field of the isolated eiectric
plained. First. considcr the sequence of patterns for the holl. dipolec E'# (48a) has a null at 0' - w/2 (0 - Or) which cancels the

* :ontal electric dipoles, the patterns on the left of tnesc figurcs. cusp in (y1/ym )Ts.
When the dipole is at the interface. hAl - (P. the transmitted The directisvittes (49a) and (49b) of the electric Pnd magnetic

*. patterns are bicad with significant amplitudv fit 0 less than and hofrortal dipoles for lussless media are shown as a function of
* pate. loan the critical angle Or, At the dipole V- raised. h/)i, in. the height. hi/01, 1, the solid lines in Fig. S- the parameter a,,i s

creased, the amplitudes a; the tianinitied patitrn% at angle% 9 > lte ratio of rpernmtviteg. e2* I e,,e.,.l The direciirty cf the
0, decrease, becoming negligible when h/X)t= 0 3S. This effect is electric dipole is seen to bie maxisum when the dipo'e is close io
the result at the exponential factor in (41 I. The tranumitted field the interface. h/), 2! 0.1. while the directivity for the magnetic

fo r sdet h eaecn pcrmo heiiae n ioei mxmmwe fj.3.Th stdrcije o

. . . . . . .sffrsepoetil. .pig.. . . .ress.s.h.a.boh.iolsinr.s.. . . .ncesigar..n.fr.. .P te

stin s aie aov heinCII11" frlagehAth ras.ae ulsanial hgerthnth dt.tvit. f h ioltd i

milled atternis sigificantonly wthin.te.cone.f.angls.0.<.oles.... D,.....2..n
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ra S. Mtectities rgaaiui for tassy mneldial of electtic and magnetic horizontal dipoicss (UnCtjoaf thelleight 4A* above
the trimefiCe between dielectric niedua, with the rtioG of peemittivitwSII -~ trzIeg .s a paramnetert.Solidl line: loodtes, media

PC I , PI , dashed line: region 2 lous PCI 0. p,2~ - 1.0.

The dependences of the directivities on thle height of the ch. finiresirsil dipole in contact With 2 dISSIPAtIVe medi!Jm Must lu2Ve
poles. h/A . Ie ess:;% e~pialned Willi bhe help of the prior do%- infinite power input ft maintain a finite Afid at a distance 1161.

cussion of thle field patterns. Consider the power radiated by' the 1171. Since. 1.. i% infinite. the gain(31 izero.
dipoles (of their field passernil to be composed of three compo.

nents: the power in tile msain beamt (tile pattern in region 2 within V. COMPARISON WITH WX'ERIMENT

the cone of angles 0 <~ L9 4C0 the powter in the sidelobes (the
pal iern ins region 21 at angles 0~, <9 0 4 ,'2 that ts the result of the A limiited expecritnal program was performed to confirmi the

evanescent spectm of the isolated dipole), and the power in the theoretical results fot tile electric and magnetic horizontal dipole

back lobe (the pattern ir. region I ). The directivity is maximized antennas oser a half-space. The experimental apparatus is shown

by mintimizing the poster in the side and back lobes. in Fig. 9. A plastic tank containing fresh water has a vertical
When the electric dipole isat the interface. h.,A, - 0. the power metallic imsage plane attached at one side. Monopole and half-

in the sidelobes is large and the directivity is low. see for example loop test antennas are mounted on the imsage plane and are fed
hf)I - D in fig. S. The power in the sidelobes decreases as the do. from behind the plane. A smiall mnonopole probe protrudes

pole is raised ahose the interface and the directivity infrases, through the ititage plane and is free to .love through 360* on a
The power in the back lobe, however. increases as thle dipole circle of radius r = 30 con. This prsibe is used to measure tile field

is raised and eventually causes the directivity to decrease. see comtponenit EOM9 in the air and in the water. A second probe. a

(or example. h/)s= 0.35 in Fig. S. Thus, these two competing small dipole. is mounted on a mnoveabsle irmn and is free to move
cffec~ts, the decrease in the power in the sidelohies and the in. through 900 on a circle of radius r = 30 Lin. Thi% probe is tsed to

crease in power in the back lobe, give rise to the peak in the di- measure the Afid coimponents El(Ol in the water. At the incas-
rectivity of the electri dipole foe hO. * lf 0.1. The increase in uremeit frequency of 900 4111 ana :oom temperature, the clr.:-
the peak directivity. with increasing e~ it the result ofa decrease trrcal prs'pertes ofire iresh water are approximnately e,, ; 78.1s.
in the width of the main lobe (0, decreases with increasing tz ). pi-a w 5.3 Y to- 2. In tile air Oir = Pft5 .65. and in tilewater
Note that the patterns in Figs. 4 and 5 are fur heights that roughly A1' % 50.6. o~r t 1.34.
correspond to the maxima and minima in the directivity of the The infiniesimszl horizontal electric dipole was approximated
electric dipole. by an electrically small insulated monopole antennao with height

Fir the magnetic dipole, the power in both the aidelobes and L w3 X 10 2 All. and the infinitesimal horizontal niagnetic di-
'he back lobe decrease as the height of the dipole is increased pole was approximnated by an electrically sinall insulated half-loop

from h/)I ft 0. The back lobe is minimum when hl,\, f 0 .25. antenina with radius b ft 9 X 10- 3 A. Note that the plane of the

-d the maximum dtrec.tivity occurs close to this point. hlp.1 -ioop was vertical to make the axis of the eqursalent magneli d;.
pole parallel to the air-water interface. Measured field patterns for

The gains of the electric and magnetic horizontal dipoles for the two antennas are presented in Figs. 10 and It. Results are
region 2 losay. p,2 = 1.0. are shown by tile dashed lines in Fig. shotwn for two heights sir the antennas above the air-water Inter-

S . These results were computed t-.- substituting (45) and (.15) int lace. hp.. = 0 and 0 1. The proihes used to measure the field were
(31)aiid performing the integration with respeci to p nuimierically. uncalibrated; therefore. the ns'nssalioatton of the patterns is .mr-

The addition of loss to region 2 is seen not to affect substantially bitrary. The maxima of the patterns in regionts I and 2 were set
the overall shape of the dtrectivtty /gain curves. A noted difference equal to those for the correspoi -ling theoretical results fe do-

occurs when the dipoles are on the Interface hp/ 0 alof (he pocofailcii ih~i=bs.Fg .h eld 14~ 1(meas-

gain curves for the lossy media are zero; while the directivity ured with the dipole probe) at the I inst mesulrement point 9 . 4'
curves for the lossess media have nonzero values. The zero gain was set equal to the field I;.* I meawured with tile monopole
obtained when the dipoles are in contact with the busy medium prb)a h nlD-0*.
is a cenisequence of a phenomenon described by Tai. viz., an in- The qualitative agreement between thle theoretical and the

JAL -. Ma
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Fig.11 Me tasured field patterns for ,nagnelmc dipole Weectuicatly wnijit loop) in air of two hewih /s aboe interface bertween
&vt (1) and tresli water (2). ft, SA.6

* measured patterns. Fig. 5 and Figs. 10 and 11. is good. The dc- sponse of the dipole probe on ste moveable arm. see Fig. 9. is af-
crease in the side lobes of the tirntrnitted field for (he electric fected by its image in the metal plane at small angles 0. this pro-
dipole with increasing height. h/)o. is clearly shown in Fig. 10. duces the ripple in the meawured patterns Ito. I for angles near
A noted discrepancy between the theoretical and the measured * 0'. A similar effect occurs when ste nmonopole or dipole probe
patterns is the absenc.e in the measurements of the sharp detail, is near the air-water interface.
such as the cusps as angles near 0, in the theoretica patterns for The relative gain (3 1) was measured for a quarter-wave mono-
the magnetic dipole. This is attributed to She measured Patterns pole antenna (LIAO ft 0.25) in air above the surface of the water.

* . not being far.zorie patterns; the radius of the measurement circle and the results are plotted as a function of she distance above the
is only 0.9 wavelengths in the air and 8.1 wavelengths in the interface. h/h. in Fig. 12. The general behavior of the measured

*water. The finite size of the fieldJ probes also smooths the meal. gain for the quarter-wave monopole is in good agreement with the
ured patterns. The monopole and dipole probes subtend angles theoretical directivity (gain) for the infinitesimal electric dipole.
on the measurement circle of I .9* atid 3.8*. respecively ; these Fig. 8. The gains of electrically snall monopole and half-loop an-
angles are to be compared to the critical anfie 0, = 6.4' which tennas were not measured, because the losses in the transmsission-
determines the width of the main beam in the water, line connections to the small antirIs were significant and could

While the two factors described above are thought to be the not be determinedl accurately enough for subtraction from the
major causes of site discrepancies betwseen the theoretical and the measurements.
experimental results, there are other factors that affect the vom-v.SUMIY N ONLSO
parison. The model antennas at e only approximations to the in- V.SM AYADCNLSO
finitesimal dipoles. This differentce is particularly Important when A procedure was developed to analyze antennas for directive
ste antennas are near the interface for example, when hAO- . transmission into a materl half-space. This is based on the planethe small loop is half in the air and half in tire water. I here is as- wave spectra of the fields for the isolated antenrta and for the an-

tcnuati. ithwae tP(I ft02)whraeten. .----------- ha--------------------pic" feldwa
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0.3 to

00

I.W 1 04jjdItlv gi ;s I)ttqute-cmnpl#I Ao 23 i,& uncionofhewt 60 bov th inesacebetee
ai an Iv ~r I

media. Thted rlts(ilie dioles a 0 iniai ~tve otosoote
;nei 0hat canc m odeedbyecrhicand mat ic horizbetee

horionta shees.ole atheosreta esriatind for the eleentr dflsi-
mcuTerslsfrtedpoles are indgo gciei st h sitl troselt for oahe
itnns neat an bi-er nodceifaby eei nd hogtiher tmny

differences between the tlicisetical and experimental nmodels.
An interesting outcomle of the investigations is that the (tori-

zontal electic dipole can produce a beam into the hialf-SPace (b)
below the antenna when the ratio of wavenumbers 1 k2 1 I is greater Fig. 13. (a) Schematic dispain of eatrst j% resonant Ciervil. loop (h~b.
than cite. such as when the dipole is in the air above the earth. 1.0) and in, approximately eivaliat Pir of gicetr dliqla i EIIUII
The massmurn directivity occurs when the dipole it clote to the Pattern fur pair of infiniteimal electic dioles in a* above watear. 2b*
Interface. hjX5  0.1. and for lusslesmedia the half-width or the AIAA 07.~
beam is approimately tlac critical angle 6, sin - 10 1 2 ).

The previously mentioned direcive properties of the resonant
cir,:ular-loop antenna over a lialf-spaLc. Fig. 2. are now easily ex-I I
plained Recall that the resonant loop antenna (010h - 1.0) has a o
Autrni disi',biation proportional to cos 0, and that tim is appros-
imnately equivalent to the current in a pair of parallel electric de-
poles. The equivalenci; for the currents is shown schematcally in V1 C

Figure 13(a). In Fig. 131b). the far-zone field pattern is Plotted IS
(fo the pat. of infinitesimtal electric dipoles that are equivalent to l
the loop antenna described in Fig. 2 (loop in dir above water. t

2b a Vix. ';X = 0.075). Comparisons of the field patterns in z too N'A
*Figs. 2(a) and 13(b) and te gains in Figs. 21b) and 8 show that s-

the directive properties of the resonant loop are correctly de-. t

s-ribed by (lie theory for the electric dipoles.5

The theoretical and nieasured gains (directivitics) for the in-
finitesimal dipole. the quarter-wave monopole and the resonant

* loop. Figs. 8. 12. and 2(h), all have peaks for 8/)., in the: range
* ~~0.07 !: hf'Ai 0A12. It is interesting that tho input resistances of 0 ~ 0 ~ 0 .

quarter-wave dipole and tesonant circulvr-imp atncrnas over the01 .2 .3 4 s

Mirth obtitn reasonable values over the same range of hA). This hi at
* ~~~~~~is illustrated in Fitg 14 where the input resistance is plotted as a h1. Int eineorar.satfiaaalnti oiihps

functio~n ofA/)fur a resonant dipole over wet ground (experi- A/Ae above the titerfact b'etween an (41 and erh2)A foperi.

his. 1.~e 5 0- p, V--1011 0 011101.
INote ival the pattern in Fir, I tb) is for the fai,,rn and oum

media. what. the pattern on I-au. 26') isfoe a 1mile rade., and low-low
mfedi.
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with e,,2 -IS. p,2 - 0.20 (theoietiral) (191, and for aecrcular E's., 
2 h0.0s.ct& iI Al*$#

* loop of radius 00 - 1.0 over earth with e,,a - 10. P,3 .0.I (6b
* ~~~~(theoretical) 1101. The input resistance$ for the dipolesSAOdloop 1 R (a~~~~cie~Ju 4b

at a pproximately So n and 100 fl.,respectively. whenA/t is E.~M ka~iloeep.l~v-~~e
n ew 0.1. These results suggest that single resonant dipole and EO W'o2l i aeIep-kh' *1'ie

loop antennas or simple arrays 01 these elements may be useful T,(X 5 1,)el'a2/4r (46c)
* for directive transmission into the esrth.

The analysis presented in this paper applies to both the cas E 0 £. W3 k 3 P Cw os C s 1CP (i-kAjk~ ii e -I

IA,,II > l and the cast I k2l I< 1; however. due to lmitations on ____rl2'~ivi7ie I4d . -

the length of the tmanuscript, numerical and experimental results -, 4d

were only presented fox the case 2k23 I > 1. Results for the case and for the maginetic dipole
IA2, I I< I were also obtained, and these will be presented in a
later publication. Ea -paentki COSOCeisol

During the preparation of this manuscript, a paper appeared +R(, e" to*~e '~ 4a
by Engheta et al. 1201 that determines the radiation patterns for +(7

infinitesimal horizontal and %ertical electric dipoles on a planar Ef.=-wornki sin 01Cos 0 elkshlrvIl
interface between two dielectric regions (only tse case hAl - 0).
Their patterns for the horizontal dipole agree with the patterns f[Il R1 Kat1IAcrCa/4f (47b)-

for the horizontal electric dipole presented here. hl/, =O0in Fig. E =w mk ciosel S01CS0 19CAP -iA Vl-ki 1'.s _- )
4. Their patterns for the vertical electric dipole have cusps at an--______
gles nea, 0 = 9,. as do the patterns presented here for the hori- * r(K 5 )e' 5 2'I/4ar.,/ I-ksI sInt (47c)
zontal magnetic dipole. h/)si = 0 in Fig. 4. This is not surprising.
since the horizontal magnetic dipole can be modeled by a small 42#- -Wok" in 1 CosC091 ex(-jAA.Il -A 2 ,jstn2 9)i

vertical square loop. The loop is equivalent to a pair of couplets. T(,) 1 2$, 4d
one verticL: and one horizontal, each formed from oppositely(4d

directed electric dipoles. The vertical electric dipoles can be Con- The tar-zone rtelds Of the Isolated electric and magnetic di-
sidered the source of the cusps in the pattern for the horizontal poles are also needed for later comparisons: for the electric di.
magnetic dipole. pole

APPENDIX £(.9' ') = o~sp Icos O'sin OT + cos e';Ie' 5k 1.4r.
DIPOLE ANTEMNAS (49a)

Consuder the infinitesimal electric and magnetic horizontal di- and for the "iagneitic dipole
poles ; - P; and ,;s - mn aligned with the y axis. For an elec.
tricalty short lineat element of current I and lenjh .11 the elec-. ~ (..''w ossjo*O-aeee~eiiI,~
tric moment is approxinsaiely p - -jIAI/tw.and l.;an electrically (48b)
small loop of current I and area &A the magnetic moment is Tedrciiisfrteeeti ioeadtemgei ioe

apprximaely - 1A. The equivalent surface current densities Th ietvisfrhelcrcdpoeadhemgtcdpl,
apof mthee lymnr sore r D,(O =0) and D,,(S 0). respectively. (regions I and 2 lossless.

A, and k3 real) are obtained from (36) with (35) and (45). After
K, fvw l -Ii(s6)$ wz)( (448) considerable reduction, the directivities can be cast in the follow-

and ig& simple forms, where thecases , > Al And k2 <Al are treated
sepa-!%ly. For k2 > ka

i. - j-p0AAA)6()8 - jzOJ-m(z)6). (44b) M2  4 [R . , IY~
where 64s) is the Dirac delta function. After inserting (44a) (lAS) 0) 3 L \v/ j
into (37) and (44b) into (38). the spectral density functions be. A

*come: for the electric dipole CeOS(2 1 h) dp -- IT 1,2-

A li'(R 1)p ARKp (45s)

*and for the magnietic dipole [lm(RI)+1,(49a)

______ A.____ 2t f4,111'
_______ 2 (5 D.(8 0)(lk )'1 , RJ

The far-zone electric fields of the dipoles are obtained by suia-
* stiluting (45) into (10) and (21) and evaluating the resulting in- & g3a

tegrals. For the electric dipole Cos (21, ) odp- 17, Ie-il

I £m-~ app d 0 Cos 0It's 0 'Cos$l I. () ll (R)].dI (49b)

fis.R(K.et Al#liei-e.Iai1 4wr (46a) and for k < k,
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Limitations on the Size of Miniature
Electric-Field Probes

GLENN S. SMIITIL w4Ion NmuE, zu

44hmermt -1Ue adatawe dipole probe b a moM h lehfr u Iqda 9
etwlc noat No high roend on ise I, Au. A mmm deepg

fo w ube Cga oft as b lotialysma wom wid aTaesrs

detecied olguc bwu the diade, be te Monitring immaidi. S"d
dipoles aredrsraok becnae ty provide high sauil reasolton of do.
field. ad beam.y uheri S ofqeic~mep~a keii gb g

hall lehsk less &a aft mdlbete. Wit the advmano le , s We W
miaueec.uues and tla-fahe sochooll. the eoam l a gmi
prbe ;; mbepasle

laws~.~ I. 6onttos F oatesdow rat oli Fiji. I. Modell rdspole rteisg probe.
* edocilm Is npityil size an detnaled. A mdu otains moist

sourS for the diado and ttrh it te ageolviao bor Is med so olicn, ,

the slp&Wow u e f.oar the probe, and t*A Is eamaed asa funtin of

the permission ie do solbe thet dipole, diode. eetvtroe ndwqom line.
an miier ene ,C) th *-ease ubAW rsi s ofd poamoderede by

th al facrAr (,I 1).ie ulilto-noth lWe ra ti is l ew d to doem b eaedeby
approxlual the factor A". siti the maiinm-desteeakeided eeca

athe tactwr k,~ A awunewi V%*tMe is made for thet sammil~y ofN
* ~~; wiage rbsmi dipole hal lqh I thindirsve s au ~* a. VIV 1_1

ADIPOLE ANTENNA that is electrically and pbysi-Acally small is a useful probe for measuring electric
fields of unknown strength. The current interest in the la.& 2. De Iotyly-noamiunceoefarin naaur elecn rield probe.-
biological applications and the possible health hazards of
nionionizing electromagnetic radiation has led to the devel- simple. For an amphtude-modulted incident field, the
opment of minature dipole probes for use in monitoring dipole pro'duces an amplitude-modulated oscillating volt-
fields both in free space and in material media. The age across the diode at its terminals. When the diode is

* ~~~~~physical size of the miniature field probe has been continu* prtn nissur-a rgoacretpootoa
ously reduced. Operational probes with dipole half lengths to the square of the modulating signal is also developed at
h less than 0.3 mm have been developed by the U.S. the diode. For example, a continuous-wave field produces
Bureau of Radiological Health and by its contractorsadietcrnttthdoe.Tscuenisasdtruh

IlI[31 an exerientl pobe wih Aas mal as0.3nun the low-pass filter formed by the losy transmission line to
have been produced at the University of Virginia. Char- temntrn mlfe.Tuasga rprinlt h
lottesville (41. With the advances occuring in nucroelectron-sqaeothamludmdltinnteitdetflds
ics and thin-film technology, the construction of even msqured ofthe him-istude prunitoengo the flds

smaler robe ma bepossble Th subectof his ape istransmission line reduces the signal received directly by the
the limitations imposed on the response of these probes by line and transmitted to the diode; it also reduces the

*a decrease in their physical size.
* A cheati .~.awig o a ypicl dpol recivig pobescattering of the incident field by the rismission fine. AA shemtic'.-wig o a ypial iple ecevin prbetransmission line formed from two different sections is

*is shown in Fig. 1. The operat of this probe is fairly shown in Fig. 1; the section nearest the dipole, line 1. has
the highest resistance per unit length.

* . Manuscript temvied Auguast 24. 1")3; revised February 2.1j934 This Fig. 2 shows a typical construction for the miniature
* work ws wpc and in pean by the Nauional Scnc l-otodauoo under electric-field probe. The conductors of the resistive tram'sGrant E~-156 ar by ft 1dMn Services Elcroe Progaunder mission tines and the discrete resistors ame formed by

Contract DAAG29Zi..tK4M04.
The author is witb the Schdao f Erwalu Eaaog, Gorp depositing thin metrilic films onl a dielectric substrate i The

mv aste of TeChoology. Atlata CA 30331. diode is usually an ucbiased Schottky barrier diocie of

0O1S-940/34/M60.034S0.00 01934 IEEE
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% do t e is a at the frequeles of interest, ie.

-~Th .1 1 1 ! impedance to t'anmision line I u the. op.
* - -~- '~ -- proximately its characteris&i~ impedance Z. 171

IUi impedance in aeries with tie resistance 2RI Appears
bea-led cnstucton iththe leads tonning all or purt acros lte diode. 7Ue discrete resistors R, mre included to

of the dipo!.- antenna. keep the transacissia. line fromt presenting a low unped-
ance: acro tbe diode at high frequencies.

* - 11. DP.UCT! SIGNAL In the low-frequency portion of the eqivalent circuit.
In the model for the miniature probe shown in Fig. 1. the diode is modeled by Whe voltage source V,1 in series with

the diwa and the conductors of the two transmission lines the video resistance A..
arc formed from flat strips with the widths wA. wu. and ,-Y (a
w2, respectively. The half length of the dipole is h, and ~VmrP(

tlengths and spacings of the transmission line conduc.- hnyeih vdiae sensitivity and P stetime
tors are si, s2 and b1, b2. The resistivities and thicknesses Average Of the high-frequecY power absorbed by the junic-
of the thin films forming the conductors of the trnmis. tion resistance X)of the diode. Note that yo is the voltage
sion lines are adjusted to produce the resistancs pe uni sensitivity of !he diode junction; it is not to be confused .-

length rl' and r2. The capacitances per unit length of the with the voltage sensitivity after compensation for the
fines are el and cl. efftcts of junction capacitance, load resistance, and reflec-

Ile response of the miniature probe is easily determined tion loss ft1 The latter is sometimes reported in ianufac-
from the equivalent circuit shown in Fig. 3. Detailed tirers SPecifications. The current sensitivity is I

discussions of this circuit are given in (5. cli. 31 and in (61; P- /R.(4b) L
the analysis of the circuit will only be summarized here. Fra da id tatmeaueo 9 .A.2

In the high-frequency portion of the equivalent circuit. Fra da id tatmeaueo 9 .0 n2
the dipole antenna is represented by its 7bdvenin equ Aiv-
alent. The opeu-t'rcuit voltage at the tenncis of the The low-frequency model for the two resistive trantsmis-
electrically-short receiving dipole is approimately pro- sion lines in series is the "Fr" equivatlent network with the
portional to tae component of the incident electric field eeet
parallel to the axis of thedipole (z axis) RL-(s~~, S)L

V~~r~hE~~[ (+ +ii ,( ct,+c ) (5b)
and the input impedance of the electrically-short dipole is 21 j ~ 1 rs ~,
3pproximately capacitive,

ZAa-j/ICA (2a) CLi~Z I+ri(htcs J (5c)

7 he effectivc relative permittivity e, is included in (2b) to ping teri of order wuis~r2',(c~s, + ciz)/(riz, + r 2 ).
account for the dipole being on a dielectric substrate. When a single resistive transmission line is used, the ele-

The high-frequency circuit for the diode is the junction ments in the network are
impedanceA, in parallel withC.in series with the resistor L 2  . CU L2O . (6
X, The resistor R, is small (typically R, S to 25 0), and R s U-C s2 6
will be omnitted in the following analysis where it is as- Note that the "Pi" network is a low-pass filter. When it is

* sinned that X .*R, and w.CR A -w. driven by an ideal voltage source and terminated in an
The complex wave number fo the highly-resistive trains- open circuit, the 3-d11 cutoff frequency is

mission line. line 1, is approximately kLI 2wfrLc (1-1).)
* . Th~~~7e parameters, viz. ,i. cl. and sl, of this line are chosen 41L- fL-RC,)

so that the transfer function v for a wave propagating over -Irlsa(casi +2c~s,)+ r'slc~s2 J1' (7)

The low-frequency amplifier is assumed to be an ideal
'TWIle dkman of fthe ilms amt ama to be smo copa noiseless amplifier with gain G. a "brickwali" passband of

* b~ill"h d e ths in t reusti- matenals at t frtqun of bandwidth &wo - 2*&f. and an inruute input impedance.)

elw*a q uI to dIa C ofua ndvcto of rad1us a W14. aoa3si- by simply AM% it so Clhe CIPAaw CLI.

-7 _f
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Sw"mt thW tthatthe mtrofthetreenowsources

* a I (10). (11X. and (13) ame appoximamtey frequency indepen-
*" t . Sdent iba been used. The squares of the magnitmde of the

-F'j '7t 7 voltage tean functions H0"() and HL(W) e

Th. assumption o n idea amplifir., , simliie the d, analysi+s/.)]/(,/ .)'-
and perits ,, discussion of the probes chartacristi, such
as its signud-to-noin ei independent of the particular +(./iW01)+ (16)

amplifierwith
For a continuous-wave incident field (unmodalated sit-

nal). the detected signal IV.[ at the terminals of the ampli-
fier. as determined from the equivalent circuit in Fig. 3. is "• -' (R. + 2R)CJ -t (17)

IV.1- 2R, ([I + R (21 , + ,1)/1,2R + z',111+ [./.,- RX,1/2 + Z.i'('}8)

with and

cR,,(C. + C,)'. (9) 0 - (W.I/.)(1 + CLICI)'+ .. /WL + 2CL2CL .

Ill. Noms ANALYss (18)

The noise voltage at the terminals of the amplifier i The integrals in (14) can be evaluated in closed form

obtained from the noise equivalent circuit shown in Fig. 4. 1141; after considerable reduction, one obtains the roo-

Each of the noise-voltage sources v(t) in the circuit is mean-square (RPMS) noise voltage at the output of the

associated with a time-average, one-sided. (voltage) power- amplfier

density spectrum P.(f). The noise power-density spectra r 2kT .-
for the two thermal-noise sources, the resistances 2R, and (01)1 L - G

P.xj(I)-4kT(2R) (10) _ __-_

where Boltzmanns constant k -1.38x 10" J/K. and T
is the temperature in degres Kelvin 19). •101.

The noise power-density spectrum for the diode is ap- (2,R +
proximately [111-1131

P.(f )-4kTRt,,(l +tf/lv) (12) + R 1(1aIl/ )

where t. is the "white noise temperature ratio." f.r the
video frequency, and the term Av/fv accounts for the "I//
noise" or "flicker noise" of the diode. The diode in the tan 4_/ ;'t--;)

, miniature probe is essentially unbiased. No external bias is
. applied to the diode, and the self bias is very small due to

the larg. series resistance in the low-frequency circuit. For
an unbiased diode. t, - I and f.,, 0; ther:fre, VIe noise 1"R + A, + Rd'I
power-d :nsity spectrum of the diode is approximately

PD(J), 4kTR,. (13)

The mean-squared, noise voltage at the output of the where
": - ~m p lifier is % "

.4 = 4-- (20a) "'

(> G [(P. .+ P.0 )jaIH0 (,)2d, /-(0 - )2 (20b)

-(0 + 4)/2 (20c)

+d/ (14) dit is assuned that A2 > 0

S-. . . .,,
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TAIL! lar compared with the diode impedance, Le. 12R, + ZI

PA"r no FMa uft P Rr This preve ts the impedance from "loading down"

0. ae dode. In addition. tO junction resistance and the
,, .,.M,. .,.k,. video "tsstacC of the diode arc taken to be approximately

_ .. . .... equal. R A , R,. The voltage wstivity of the diode ya can
be cxpresse in terms of the ¢unent sensitivity (4bft o -
o. -"1tJ." With thrc assumptions. the detected signal

(8) becomes

IV. SioNAL-To-No!w IRAio C, IzlIEl [ (22)
With the expressions for the detected signal (8) and the TAC,J 2

RMS noisevoltage(19)available.thesignal-to-noise(S/N) If 3a :P-, the response of the probe is independent of
at the output of the amplifier is determined frequency, and (22) ,s simplfied

S/IN-ln.V(v)" 2 . (21) 1 CA 113E,

This expression is easily inverted to rind the minimum 1V.1 C (23)

incident electric field lEI that can be detected for a given 2

signal-to-noise ratio. The total resistance of the transmissio tines Rt - 2(r s'

To test the theory, a numerical calculation was made for + r,"$) is chosen to be much greater than the resistance

a miniature probe for which experimental data are avail- 2R, + R,. i.e.. RL v- 2R, + R, making w/si, -c I for

able. The probe considered was developed by the U.S. CL, and CLz of comparable value. With this assumption.

Bureau of Radiological Health and the Narda Microwave the noise voltage (19) becomes
Corporation (BRH Model 10. Narda Model 25256): it has 22T

a dipole ball length h - 0.75 num; approximate values for NLG tan- (2')
the other parameters that describe the probe are listed in V ,CLI

Table 1. Simplified approximate expressions for the signal-to-
In measurements made by the Bureau of Radiological noise ratio and the minimum-detectable incident electric

Health, a signal-to-noise ratio of 10 for a 1-Hz detector field for a fixed S/N result from the use of (23) and (24) in
bandwidth (Af - IHz) was obtained with this probe in an (21)
incident plane-wave field at the frequency f - 2.45 GHz
and at a power density of 0.05 mW/cm2 (peak incident PoPIE"]:[cz/ C,)]

" electi c field IE:, - 19.4 V/m) 13] A similar probe (Narda SIN, h (25)
Model 2608) was tested at the University of Ottawa; their 2 kT

measurements at the frequency f1-1.0 GHz show that a
peak incident electric field IE,'l- 7.7 V/rn is required for r 11,/) / 2
the same signal-to-noise ratio and detector bandwidth (15i. I,1E' 2(S/N) -(AW/L)/h'"
A theoretical cak-olation made by using (8), (19). and (21) V2S/) ta A2
indicates that sn incident electric field (E,1 - 2.5 V/m can (!+Cj/C,). (26)
be detected under the same conditions. The agreement /

between the measucd and the calculated incident fields Note that the inequalities used in obtaining (22) and (24).
(they differ by factors of 7.8 and 3.1) is surprisingly good, 12R, + ZJ R, and R m 2R, + R, can be satisfied by
considering that the parameters for the diode are only choosing a diode with a suitably low junction or video

[ typical values for the type of diode used and tsat no resistance, since 2R, is of the order of A. or R,. These
account was taken of the noise in the amplifiers, inequalities, however, are not the only conditions that must

.S•s t V~u be considered when choosing RA,. The junction resistance
V. SENs Y VER.SUS PROBIE SIZE also enters the expression for the heQuency 0, (9) which is

One objective of this study is to determine the signal-,o- the lower bound for the frequency-independent respons, of
noise ratio and the minimum incident electric field IE,1 the probe. A discussion of this phenomenon is in 161.
that can be detected for a given signal-to-noise ratio as the It is interesting to examine the cxpression for the noise
physical size of the probe is decreased. The expressions (8) voltage (24) for two limiting cases, i) the bandwidth of the
and (19) for the detected signal and the noise voltage are amplifier equal to the 3-dB cutoff frequency of the trans-
too complex in their present form to extract any general mission lines. Aw./, - 1, and ii) the bandwidth of the
dependence of the sensitivity on the parameters that de- amplifier much less than the 3-dB cutoff frequency of the "
scribe the probe. The complexity of these expressions, transmission lines. A ./u t - I. In the first Case. (24) be-
however. can be greatly reduced by making a few simple COMC3"
assumptions.

The impedance 2 X I + .¢, that shunts the diode in the ()/,Gf -t (27) ::.
haih-frequency equivalent circuit. Fig. 3. is chosen to be 2C,,

1_3
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f When t tuasta of this fillat transiaioo Mr is much and X (30b) unchange. ThU dimension of the dipole (is
Vrateir than that of the second (risa,'1s3 -IN, the and w.) wrereduced by the scale factor k, (k,c<l). Thec
capacitance CLI (5c) and the notse voltage (27) ame nearly widths a id the sp..ng of the conductors for both tvans-
irdepeadent of the resistanottof the transmission line AL. missiot.nea (wa. wLI and bl. k) are also reduced by the
IIII is the r""ut Of the DO"s power-density Spectrum P.aL SaMe .cae f"cW-r The capacitances per-unit-length for
of the tranmission bea being proportional to AL and tbe both of I'e transmission line c1 and :1 are then nearly -

'bandwidth of the amplifier a.. ocng proportional to RA' indevenue t cl i,.'[which makes the product RLAW~ intwcndentof RtL. 1n the The -r.uir; parameters for line 1. ,i and s,. are
7second case. (24) becomes detmiar'l irom (31) and (32) once the constantsiv and X

(<v)t/t. GJ(4kT & f (28) are sp":Ified. Note that the resistance per unit length r,
must be increased as k-I and the length s, decreased as

This is just the noise voltage produced by the resistance of k111. The scaling for ,l' can be accomplishet; by dIg
the traLamission lhnes ARL in the ban& ,tth If - Au/2 I. fixed the thickness ILI of the resistive film forming the
In both of these cas"s the expression for the ni~umum- conductors of the fine as the size of the probe is reduced
dtetectable ele'ctric field for a fixed SIN (26) involves c, (rle 11WLIIWLl *C k1).
and only two parameters eiAt describe the probe: the half The length of line 2 is held fixed, since it determines the
length of the dipole A, and the transmission-line caaci spacing between the dipole and the insoruimentation. and

tce C2(aei) ortetransmission-line resistance th the resistmnc of line 2 is assumed to be much smaller tk;.n
(case u). Of these parameters, a vaia tion a h ha h the resisance of line 1. r2 2 C,,':,. This makes th.- capaci-
greatest effect on IE,'L since it enters the expression as h - tors CLI and CL2. (5b) and (Sc). and the cutoff ftqLuency
when C -cC or Ash-'he -C whereas the ote '41 (7) in the equivalent circuit for the transmission lines
parameters enter the exprctsion as Ci, and R'. nearly independent of rls,:

The highly resistive transtrmsion Line, line 1, must be CLI ciii /2
designed to not interfere witL the reception of the incident CLI, *cs,/2+ c5sfield by the dipole antenna." .This is accomplished by
making the transfer function for a wave propagating over Wi~an rs1 (Ctz, +2C 2s2)j.
the line With the scaling described above, the dependence of the

I- exp( - aici :1 (29) signal-to-noise ratio (25) on the scale factor k, is easily
determined. Usually. C, CA for very short dipoles, mak-

smnall, as in (3a). and by making the reception of the ing the numerator of (25) approximately proportional to h'
inmident field by the transmissior line negligible. The ratio or k,. Ithe denominator of (25) is only weakly dependent

PPof the signal received by the transmission line to the signal on k,1: for emt~pe whe 'Ia -C W~tednmntri
received by the dipole ... propottional to proportional to k-11 7b" Tus the signal-to-noise ratio is

XIZd/(Zla + 2R1 ) (30a) seen to decrease approximately as k,4. The same argument
shows that the minimum-detectable incident electric field

with 1E1' for a fixed S/N (26) increases as k.
X In(4hIw.I b1(t1rh (3)I In Fig. 5, the ctinimum-detectable incident electric field

x (b/h)( 0 /2r) 3b) E'L obtained from (26)X for a signal-to-noise ratio of 10 dB
j ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (I an-,eult h meaneo resae~~ 3.16 ..) is shown as a function of the half length

raneption eqayt the rnmissionclie is nregle w11 he fhe dipole. The scaling described above was used inrecetio bythetrasmisio fin isnegigile henthepreparing this graph. The parameters chosen for the dipoledirlensionless parameter X is small. ie., 1 C. With -r and and the transmission lines & re h/ wA m 5.0, 11, w1.0. b,/1h
x specified. (29) and 030b) cAn be rewritten to obtain -0.c 2 -1 pFtosfrthdie eC
expressions for the resistance per-unit-length ri and the and' - 20.0 A/W (the theoretical value fra da
length s1 of line I diode), and the temperature is 290 K. In addition. the

P1- f(bI/A)[ln (4A/wA) -11/2ehX (31) dimensionless parameters v (29) and X (30b) are assumed
to be r -0.01 at the frequency f -100 MHz and X - 0 .01.

a, - - ln(r)/Fyr-". (32) Results are shown for the bandwidth of the amplifier equal
to I Hz and equal to the 3-dB cutoff frequency of theNow consider a reduction in the size of the probe that tasiso ie.Cre r rs'tdfrtpclvle

leaves the performance of the highly-resistive transmission of the capatcitanice per unit length of transmission line 1.
line approximately unchanged, iLe, the parameters -r (29)

17t thintrun of the thiin-filn emiducton ame a'wmed smiall cot.
'The Vtastmson ine muat "i be desierd so tt Ilse amouint of pared ith their width, and the thickne" of the djdeqtnt: substrate is -

tfeer St seattem is acueptble for a parthcular applicaton. Formnulas for assunied larpe compared with tie duimeas of the Sransus"oe

&- SS"Co C ftil!Katt 7 r OU



%ensitivity to be expected from miniature electric-field
u.~ .. ~.probes of the design shown in Fig. I and with the spccilted

vialues of T and X.
.,. {Currently, the beamn-lead diodes available commercially

1119 have a junction size of the order of 100 put. Probes
I . constructed using these diodes, eecn with sow.t modifica-

tion to the diode, are limited to dipole half iengths greater
* tha about h - 0.3 mmn 41 New diodes would have to be

le fabricated before probes with snsalcr dipoles could be
constructed.

VI. CONCLUSION
The miniature clecuic-ficeld probe with the construction

shonai F& Iwasanlyzd t dterineit sinadto

Fig S. The auninsum-~~ ~ ~ ~ ~detectable incden electric fil F d ield for a fixed signal-to-noise rto %mto o cln
si-0 pF/m ad eru 20) polen hl egA.e parameters fo in e pigyraia diou ind o f teae apmnnteprobiae asA. asTh

inthes pavrtualcaeters wim affecti the etal su ed aueorithdegnffuremntrelerifedpobs
for: a 9Hoe , BmnadFlte1J 3Gz )F apeetd n the variation in the withivtyo thee parmtesobeWEDMN

be a /iy slw, sinc theay Mele the1 epresiony fr at135) heuho wasea ishesigltoni.sse andfo the probewof
(26)d as arguments ofroiatl as kourt root. inr

FromFig S.i clar hattheprie pid or derea e tectbre fciRadiologtic fiead for fxsuligngl-thendata
in =h siz of/ ah n atu0 e pfield prees se drsi de ieas frthe was foun ed probnc eas adpro f.at tucly of2.T
in thesensptiamtt.ervenifo affdectio balcdatd afon the Uniesity of Outtrnaufre perii tos. a

onlly bail slo. sinal-to-noi nerato the halfreint fof te srddt rirt ulctin h uhr ihs
dipol ust bruenso rafrth about. Thmtmau e a u~ak .Rth an wihst thanivrs of. Vignia for svralo

FrotFig .iet of cler th the drietecio badwithhcreadicusinso the fueuoRdooiabicatio of suplinatre daeld
eqal the uof feue of the miitr ildpoei rascd s fo r proe and elect&dgad fror an crotica readingh ofth

lines, the half length of the dipole would have to be greater manuscript-
than about 0.5 cm to measure the same electric field. REnaTx~icxs

Of course, a decrease in the length of the dipole has the III H. Bau M Swicrd. And J. Abia, "A effirlallue t-re'ad-band.-
advantageous effect of increasing the maximum electric electric field protir. Annab New York Academl, S'ciences. Biolligical

field that can be measured with the probe. i.e., a larger Efet of Nonioriziag Radiation, vol. 247. pp. 411-493. Febi 1975j (121 HI. Bawssa. W. Heninn and R. Hoss. .ESIt probe with iber opticelectric field can be measured before the voltage across the tdcrrwtry." Mhcraillv.J.. vol. 200. pp. 35-39. Apr 1977.
junction of the diode is sufficient to cause a departure from I)l )If BAsstii ile K. Franke. BHit mplataet probe evaluat'o

squae-lw rspone. oweer, her ar othr pefered October 1979.- Unpubbhted Reprn Bureau of Rtad otovcW Health.squae-lw rspone. oweer, her ar othr pefered Rockville, MD. Oct I Y78.
methods for correcting for non-square-law respot.%e that do 141 T. E Batcbman and (3 Gpleson. 'An implantable ulectrnc-tield
not affect the sensitivity of the probe, such as the use of probe of subminiature dinmensios." IEEE TImas. Mwrownatv Th'-

shaping circuitry in the monitoring instrumrintatioa 1 5 7Trt.vl Mli.6w757t Sp.3615RI. W. P. King and G3. S Saiith. Antennas in .4mn~. Fiarnrav..The measured results of other in'estigators for probes Theory Ad. Appheanoa. Cambridge. MA: M4.?. tee. 1981.
with harI e-ngths in the range 0.75 hmm':h 48.9 mm are ch. 3.
also shown in Fig. 5 (31, (151. In all cases, the measured J61 H 1t 1a~see and G. S. Stait. 'Electric fild probes-A mve%.'
data have been converted to give the minimum-detectable, T9ns. AtnmP~ea. o.A. p 3-3.Sp
peak electric field for a 10-do signal-to-noise ratio with a (71 G S Smith. Aunalysis of mnuatum elaclric field probes with
1-Hz bandwidth. The measured points Are seen to follow resitive itrjmituoon Siles.' IEEE Tramu. Mfewo V~wy Toril..

the trend of the theoretical estimate, but they are higher by 1111 J. Leof s~ ~ wShli-sdlcitheout DC bias.factors of three to twenty. This is to be cxpec'd, since Afrc ..aewa vol. 16, pp 44-4. Feb :977.
some of the parameters for these piwbes are quite different 191 F. K. H. Rotinmn Noe aid 11wrina of Elecronic nv es and

ical curves can be considered as reasonable estimates of the Sevels. New York: McGnvw11:11, 1963. ch.9.
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Calculation of TMo0 Dispersion Relations in
a Corrugated Cylindrical Waveguide

ALAN BROMBORSKY, MIMSER IEEE, AND BRIAN RUTH

Ab -narr -71h l-mode Masti% e n P c is. goomr. electromagnetic field distribution must be accurately de-
trysetcoveret!toa salevetat%;stem of couple Linear iferes'tal Ierinined.equiamoag. in wbtc die bountiy enditiom o br a waviteide of varyiig The basic objective of this paper is to descibe a tech-

diameter we Included In the ci4tflea maoib ofi the stae-veler system.
e padeida prF" a, pg loft boundary coadidonor i o o nique for computing the disersion relation and ele.ro-

Ewir ,, w a sinuoidaly inieafti wal. magnetic fields of the TMo. modes of a periodically rip-
pled cylindrical waveguide. Please note that the technique
to be described also can be applied to other thin TM.,

I. INTRODUCTION.e modes. so that with minor changes the derivation could be

T HE GENERATION of ultra-high-power (-I GW) quite useful in calculating TE modes in tapered gyrotron
microwave pulses, via the drivinf of slow-wave struc- cavities. AI-co note that the source terms in the Maxwcll

lures by irnense, pulsed, relativistic electron beams (0.5 to equations are not initially set to zero. This is done so that
.0 Met, 2 to 15 kA. 15 to 100 ns) [11, 121, places unique eventually the field calculation described can be used to

d,&mads upe'n the slow-wave stri ".u.-e in terms of the RF compute the coupling impedance between an electron beam
power dcnsities (0.3 GW/cm2 ) and electric fields (400 and a propagating waveguide mode.
kV/cm) present in the strct *. Conventional slow-wave II N OF MAXWEI± EQUATIONS
structuies, such as the hells- and iris-loaded waveguides,
are susceptible to high-field breakdown, and hence plasma A. Notation
for-nation, with the subsequent sho tang out of the slow- We define (in MKS units)
wave structure. What is required for ultra-high-power de-
vicM is a structure with a periodic wall shap; that does not C free-space speed of light.
lead to undue electric-field intensification. A po-sible 9o permittivity of free space.
candidate is a cylindrical guide in which the waveguide Peo  permeability of free space,
diameter vanes sinusoidally with amal position. 17o free-space wave impedance (377 ),

However, in order to deii1 a deice utilwng such a P wave circular frequency.
structure, the cold waveguide dispersion relat.n and te r, 0.: cylindrical coordinates,gd dE,, El. E, electuc-field components.

Mauetfpl r oeived Aui st 31, 1"93. r mied February 6. 194. H,. H, E, magnetic-field components
Tbm atbM VT Vuih the PElaulnme of the AM. Iatry DIamod J, , J curtnt-density componcti

Laboratores, Adeiphi, MD 20783. L periodicity length of slow-wave structure,

0018-9480/8/06W40000 01984IEEE
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5-1 UfIUODUCTIOI4

The Angle4ves loop alte 6a metal conductor beat into the shape of a closed
coum, suh a& a eirele or a squame with a gap in the conductor to form the temminals,
A auiturs loop or cad is sen.s auenetica of overtaying tim The loopis mueof
the pimary astean strauam its e a a receiving antenna dates back to tk early
experiment of Hem on the propegatioa of electromagnetic waves.'

The discussion of loop antennas is onaveniently divided according to electrical
size. Electrically small loops. thave whose total conductor length ia small compa"e
with the wavelength is free mpace, ams the mota frequently encountered in peactass.
For example. they at commonly ed as reativing antennas with portable rada. a
directoal sntemnu for radmo-wsse navigation. sand as probes with field-strength
meters. Electrically larger loops particularly thesc mear resonant sine (circuusfereace
of loop/wave.ngth 1). am used mainly as elements in diti sA:y

The Following symbols are used throughout Lb chapter:~

A - wavelength in free space at the frequency f - w/2w. where the complex bar.
manic time-dependencte ap (pas) is assumed

0 - 2v/A propaation constant in free space
f 7-wave imipedaneo(meespace (es 377 0)

b - mean radius ofia circular loop at mean %ide length of a square loop

a m radius of lop conductor (Ali rults presented are for thin-wire loops. *b a

I.)

A W ame of loop

N - number of tud h.

4- length of solenoidal coil

5-2 EL.ECTRICALLY SMALL LOOPS

shle axia cofrent distribution in an 4etrclly small loop is asumed to he uniform:
that is. the current has the same valui toat any point along the conductor. Fo single.
tun loops sad moutiturn loops that am, sirgle-Lsycr adenoidal coils. mcasevements
suggest that this is a good assumption provided the total length of the coaductor IN
X circumference) is small compredn with ahe wavelength in free spac. tyically
OIlA and the lengtho-to-diameter ratio for the aenoidal coil is greater than about

3(t,126 c y 3.0).' With a uniform current assumed. the electicallysmall loop ane
is simply analyrzed assa radiating inductor?

pTra/ism ltng Loop

The eleromagnetic field of an electrically small loop anenha is the same. that of
a magnetic dipole with moment o r IONA:

I.))

1-7-
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smn9 (5-3)

whene the plane of the loop is normal to the pola axis of the spherical coordinate
system (F. .0) centered at the loop. as ahowu in Fig. 5 -In P tbe fat Zone of the loop
(hia Or- Co). only 'the leading term in Eqa. (S-1) &Ad (5-2) ane significant, a"d the

Fla. 5-1 Loo n -sttm no sconwenyuig FIG. 5-2 For-Zen 'stciOfa.ld pot-
uphatical coordinste system. "W3 of anl elactricafy wl oop.

field patter. for both E. and So i the vertical plae is tme simple figure eight shown
in Fi. 5-2.

The dniving-point voltage and current ate related through the input impedance
of the loop. V -ZI.. For electrically small loops. the impedance ithe serits combi-
nation of the reactance or the external inductance V with the radiation resistance if
and the internal impedance of the conductor Z - R' + Jn.LL

Z - Jr+Zr + JwL- Jr4 le 4 L' +L) (5.4)
In the equivalent circuit (or the small loop, a lumped capecitance C i sometimes
placed in parallel with Z to account for the diatributed capecitance between the sides
of a single turn and hetween the turns of a solenoid. as shown in Fig. 5-3. This cape-
itance is omitted here. since in practice a variable capacitance is usually placed in
perallel with the loop to tune out its inductance; the capacitance of the loop simply
dcreases the value of the perallel eapacitance needed. Mote that a loop with.a truly

uniformn cuurnt distribution would have
no capacitance. since from the equation
of continuity there would be no charge

L.' along the conducor of the loop.
Z. cThmale radiation resistance of the

T smal loopis proportional to the square of
* *... the product of the area and the number
* of turin:

FlG. -SEqivalent s fo r kWiA bl. i IA2 (4
Padtince Z of on efcrc~ emalimp~A (4

................................................... q ...
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For singltum %" And solenoidal Cil; whose tuo re an M too closely spaced. the
lnterrMal impedAMc is apptilaLhWY

- a X WAI ISof oductor (4I wber a' is the internal impedamc per %sit leallh of a straight conductor with the
samn -rou section as the looo conductor.' If the turns of the coil ane closely spaced.
the proximity ffIect must also be included in determining V'.

The external inductance a determined from an of she many formula available
fat the inductarr-4 of coils.'

For a siinl.4ur circular loop

and for a single-turn squre loop a(b/)- 3(5

The external inductance of a tightly wound single-layer solenoidal soil of length t,
and a radius b is often approximated by Larnzs formula for the inductance of a
circumferentally directed currnt sheet.' Numerical results from this formula can he
put in a form convenient for application:

V- KpsN'A/1.(5
where the factor X. known as Nagioks's constant. isOwn us a function of the ratio
*,12b (length of the coil to the diameter) in Fig. 5-4. Note that, for a long coil (4/
2b M, ). X -s 1. 71e usp of Eq. (5-9) assume& that the turns or the coil are so closely
spaced that the winding pitch and insulation on the conductors can be ignored; if
highly accurate calculations of V arncessary, corrections for these factors are avail-
able in the literature'

Recalving Loop

Whem the electrically small loop ia used ass receiving antenna. the voltage developed
at its open-circuited terminals Vac~ is proportional to the component of the incident
magnetic fiox density normal to the plane of the loop, 5V,

Vw - MNAJr(510

where the incident field is assumed to be uniform over the area of the loop. This simple
relation between Va. and r, makes the small loop useful us a probe for meain the
magewic But density. Ifr a relation between t incident electric and magnetic fields

at the center of the loop is known% Vo can be expressed in term of she magnizude of
the incident electric field r and an effiective height k, This is the case for -n incident
plane wave with the wave vector htand the orientation shown in Fig. 5-5:

Vc -JNAr co#sin 0m, - .9,.0)E' (.1

where k(#.Oj Vcr'J NA co4sie (,5d12)
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Th volage acru an abitmry load impedance Zj connected to the terminal of the
loop with input impedance Z .determined from the eo vtno mn eqdiemv w carit is

Fr,54:

~VeeVZd(z + ZJ)(.

.. "i ! '°-..-:



-of-"do -le Loop
The opto~areult voltage at tbs wtermnls of the clowticaily small receiving Imop ca
be incesasd by filling the loop with a coe of permeable material. usually a ferrite.
The effet of the ams g o increase thbs magnetic Alux through the area of the Ltop. s
ilhiate in Fig. 5-73cor a saolea al and with a cylindrical amr placed ia a uniform
"Wm Magnetsc field.

Usherrite material is characteimed by a mplxesflative initial Vpermeability
a /As 14 p-.and arelativpemitiivity P, - c/4 .Te maerialiuually

selected to have aloss tangent p. - a' 1# which is smuall at the frequency of opera-
tioe and consquentlyp.4 ia ignored in the aaalysi eacept * hen the power dissipated
In the amr is being calculated. The dimensions of gbecr ame allo ammed to be emtail
eaimad with the wavelength in the ferrite X. - A/ %6.7 to prevent internal re-o

ances within the core.'
The open-circuit voltage for a single-term loop at the middle ofta terrie cylinder

of length 1, and rad.... b is incrsed by the factor ite, over the value for the sains
loop in tree $pact:

Vor fihAr. (S.14)

M~L IN INECIDEN4T FIELD

COIL *I?" FRRITmE COREl IN INCIOCP4? FIELD
PI0. 5.7 Efect of a Cy~itwe ta" aoen thme "We-
nt 5SM WeroqJg a maltsn ol l O.

Me W" bsI pu,eMIT is Ow. demU djd im te 60At M N. ai ftlwas Dehluwe b
b am ernu. amd kt samad it. puomnowy is amesd w btul



Hema the tadI or th loop cmuclo a be 4wnoed sad the Names ftdm of the loop
a&d thM o ame assummed to bae mamam value 6.7Uh graph is FPS. " shon t1I
appareat perombility N&I au a function of the lealtheodiameter rati lot tie rod
1,12k with 11me reltive initial emability of the feInt m: as a pawasaeter.' Swmilar
gpph fec the apparent permecability of soli ad llow1 sphter"odlmmain the

For a tiagle-layer aulenoidal adl of length t, tered on thw ello. as averaging
factor Fr must be inicludedl in teopiicircuit voltage to cimast for thes decreaser n
the de alONN the legth of the mail frommthe maximum at the midle:

The empirical facto F%. determinted from an avessge of expefnmntal makms. iallsho
in Fig. 5-9 as a functionsof tU *W I,length ofk sM ultolengm tf e), OL'
For a long rod of moderate permebility (1',12b 3,1 mh NO) mae by a coil of

Sao
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no14 The mnparwi pmsnnmn 0. at "m wo of a
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rm these mals. The premsabitiy of a specific ferrite can be obtained from the
* .Manufacturer or from the extenive table ad cam in Ref. 11. The may pararow.

.- that an to be chosn fo the fuyte4oaded loop. such u . 1., N. tc.. offer a
grat deal of fileability in aes daiW There are several discusaions ia the literature that
determine these peramtera tooputin the performance for a particular ap .,ication."

S. The electomnagnetic ield of the ferriIA-losded transmitting loop is given by EL.
* ~(3-1) to (5-3) with the moment mi - ji,.frI4NA. The ferrnte4Odd loop, however

is seldom sed as a transmitting antema because of the problems associated with the
gonlinearity and the dissipation in the ferrte at high magnetic held strmLgt"

5-3 ELECTRICALLY LARGE LOOPS

As the electrical site of the loop antenna is incresed. the current distribution in the
loop departs from the simple uniform distribution of the electrically smal loop. For
single-turn loops, this departure has a significant effect on performance when the cir-
cumference is greater than about 0.1X. For eumpts. the radiation resistane of lan
electrcaUy small circular loop with a uniform current, u predicted by Sq. (5-5). is
about 66 percent of the actual resi tance when Ob - 2wb6/A - 0.1 and only about 26
percent of the actual resistance when Ob - 0.3.

Of the possible shapes for an electrically large loop antenna. the single-turn thin.
wire circular loop has received the moat attention. both theoretical and ciperimental.
•The popularity of the circular loop is due in pan to its straightforward analysis bv
expansion of the current in the loop as a Fourier series:

I(*) - /a + 2 f.co o -191

where the anile 0 is defined in Fig. 5-1." Measurements on electrically large loops
with other shapes, such as the aquare loop. show that their electrical performance is
qualitatively similar to that of the circular loop; therefore, only the circular loop will

* be discussed here."

Circular-Loop Antenna
The theoretical model for the circulsr-loop antenna assumes a point-acurce generator
or voltage V at the pasition 0 - 0. making the input impedance of the loop Z - X
+ JX - Vii(s - 0). In practical applications, the full-loop antcnn is usually driven
from a halanced source, such as a parallel-wire transmission line, and the half-loop

* ntenna. the analog of tkc electric mon-pole. is driven from a coaxial line, u in Fig.
5-10. The point-source generator of the thenrctical model contains no details of the
geometry of the feed point, and it is not strictly equivalent to either of these methods
of excitation. However. theoretical current distributions, input impedances, and field
patterns computed with the pointsource generator and 20 terms in the Fourier seruis

Fsq. (5-19)1 are generally in od e ement with measured valuea. Thua. the theory
serves as a useful deig too.

* In Figs. 5.11 and 5-12. the input impedance of a lop constructed from perfect
conductor is shown s a function of the electrical eie of the loop D - 2.bhA (cir.

Ifte 11mndcid m . .5-s. SI . 314 i 5.18. ad 
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eumfercace/wavelength) for various values of the radius of %he onductor. indicated
by the aikkwvss pausuee 0 - 2 In (2vb/@). These impedances ane for fauIIlop
matennas; for half-loop antenna with the same radius ad conducr ese. impedances
aft appoimately one-half of theat values. The reactance X is meen to be meo at points
ncea-b - £. iX. . . .(mniesocan poins)andflh- 1.Z3 ... (e astapons).
The resistance obtains relative mahims near the points of atiresonaf s ad relative
mnims maa the points of resonance. Impedances, computed from Eqs. (3-5) And (3-
7). which apply to electrically smll loops, are also shown in VIP. S-It and S-M2 the
inaccuracy of theae formulas with increasing Db i6 evident.

When the electrical size of tlm loop is near that for resonance (b - 1.2.3....
the dominant term in the Fourier meinm for the eurrwen: (Eq. (5-19)] is the atwith a

-integer (0b). For example, nar the Anst resonanc Ob ft 1. the current is the loop
is Approximately 21,) - a 21 . and the loop is commonly referred to assa resonant I
loop. The resonant loop (Ob mn 1) is the most frequently used electrically larg loop.
Ittaeaonable input resistance. Ai wl00. fortmtcbinato atrsmision lift.
partieularly when compared with the resistance of the antirsomtn loop (Ob to 0.5).wi •I I .I/ i \
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The current is d hes aumm loop has maxima. at the generator. 4 -0. and at the
diamtrically Opposite point. # - m. with sodeas r/2 and 3*/2.0 Oma i Uoo
d1 Fwn 5.13. the curmet is ema to be roughly quivalent to that isa pair 01 paralle

diple nteossdries s paseand with aspacing approutimatdy equal to thedam
ewe of the loop.

IMe fsr-some held patterms for the ronaut loop bowa in FWg 5-14@.c am also
similar to those for this, pair of dipsoleit they have little membisce to the Igusogt
pattern of the electrically umall loo, Fig. S.2. There an two amponenta to the eke-
tic field, As and EO A,.i ma in the horizontal plane* - .1v2 and im the vertical
plane* # 0..s. while E. is amall im the wertical plane 4 - .13/2. The amplitude
patters art -'ymetuical about the plases 0 - ./2 and 0 - 0.1v owing to the -wo
meitrical syminetry of the loop. and they an aearly sytmetrical about the plane4 -
P-/2, 3r/2 owing to the dominance of the term 21, or% # i the current distribution.
At the maxima (f - 06r) of the bidirectional patter. the electric held is bandry
polarized in the direction .

To help ats visualsze the electric field. three-dimcnaioaal amplitude parearms for
the electrically small loop and the resonant loop am presented in Fig. 5-15S. Each draw-
ing is a stes ofpattemls on pb3aes ofcontant angle 4.only the patterninthe uper
hemisphere (0 :5 0 :9 /2) are shown. since thoe in the lower hemisphere am
identical.

The directivity of the circular loop in the diretion 9 0 or,. a shows as a

0 ____

461

MI. S-1S Far-ton e kide ea paftam in uppe frImam~ue
(a) Elecoloasy eaa loop. 06 4K 1. (b) Aaonat ool, Oft I A.0
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Oraim Lo" Tom mvwfnk
The patters of the nnan imp is madle unidirectional and the directitrityim the tliuec.
sian 0 - 0 i inoesed by placing the lomp wier, a plane reflcto. The thomutiWn
roueh for an infinite perfectlyooducims flfector (Fig. 5.17) show tha the diretiv.
ty is greter than 988D for spacowg between the loop and the reflect. in the mag

0.05 - d/A S 0.Z. ovea this um lag of spoags the input impedame Z w*j
+ JX (Fa. -l 1) has vale. which are easily matcheil; the rsstnc is reasceble (jt
:6 13S0d.Wthe tacmm .il ~(Il x:S20 0).

The ihoretical twoults for an Wafiite refeto ane in good agreement with men.
sured data for finite "mar rectors of sidle lenh s. The discwiie meaured by
Adschiend Mushiske" (Sp. S-17) for areflectowith s/?a=.2 N ndpL SO.26
are slightly higher than those for an infinite plane *hile the input impedanm es.a
sured by Rojr&anomt and Sekiguchi's(Fig. 5-1S) show variations with refector size,
0.483S /A S 0.95. but genern agreement wit the melts for an infinite plane.

too
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Electri eldM patters meaured by Rojarsyaaamt and Sekiguh" for mm
loo ca.qaaner wavslengsti. d/A -0.23. ia front of squar reflectors an shown in
rWg 5-1% The shaded are in each figure shows the vauiation in the pattern, that isa
toulk of changing the snst the square refte-Aw froms s/A 0 .64.,1 s/A W .5

petlems for loop wids Ob - 1.0 ee sqe
re40cloa EO - 0.26. kVW a" elk - .6
DOW Curv elk - 0.64. (a) VerttmWVWa

miee Saw petma lU16. 6 - 0. w. (Ad-.
an Ian Nomvsvuninv and

Coaxia Arrays of Merttlar Loops
- Loop antenas,. like linear atmt'afS can be combined ha sit armay to improve perfor.

minece. The mus common army of circular loop is the coaxial array in which all the
loafs are parallel and have their centers on a commas ais; an examrple of a coaxial
array.i shown later in the inet of Fig. 5-2 1. The Foutter-swies analysis for the single
lMop is aely extended to the esezia array wima all the driven loop are fed at a
comma.m angl. e.g. - 0 ha Fg. 5-1. The current ditribution in each loop ia
expressed sa a series of trigounometuic terms Like that in Eq. (5-19). 71e simplicity of
the analysis reults fromn the orthoponlity of the trigonometric terums which makes
the coupling between loops -c- only far tarm of the same arder a Illus. if all the
driveubo pin thear&my amre erresonant size.D O f 1. the teru xl - usthe dam.
lsat ame ha the curret distribetiams for all gooMa i... the cuomet is approaimatelly
propoinali to ame hai all loops.

Vw all the elements ha the loop a&my ane driven. the sme procedures that are
used with arrys of linear elemnts can be applied to select the driving-poift volsge
to optimise certain perametema sech as directivity." --. feed arrangement needed to
obtain the preacribed dnivng-pomnt voltages however, is ver) camiplea fey mare than
a few elessnts ha the array. As a result, a simpler and more economical amuageent.

* -an arry eantaining only one driven element and several parasitic loop s often used
7P(a pwadsk "oP is a continuousa wire with so terminals).

Vihes a sin&l closely spced parasite ha used with a driven op. the parasite
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my ct asa director or as a reflector. This is Illustrated in Fig. 5-20. in which electric
fieldtterns afsho for adriven loop (b3 - 1.0)anod aparasiiclImp with the -

-spacial;gdfl -0.I. For loops orthe same electrical sin (Pb, - Ab3 - 1.0). the in"-
ita i Ilste pattera SL 0 - 0. war Mnearly equal. ThC parasitic loop that i slightly
smaler than the driven loop (8b, - 0.95) scu as a director, producing a maximum
In the pattern at 0- w. while the parasitic loop thatis slightly larger thansthedrven
loop (bt - 1.0S)asetsasarefector. producing a maziimminthe pattern at0 - 0.
This behavior is 'ray similar to that observed for a resonant linea atena with a
dusty spaced parasite.

The driven loop ofeectricalsi"eOb2 - 1.2 (03 - 11. a, - *I) with asingleV
parasite was studied in detail by Ito et al.39 In that study. the optimum director was

*determined tobe aloop with fib, anO.95 and spacindal Oflhm0.0this poduced a
directivity of about7 d Bat 0 we r.Theoptimum reflector was a loop with Ob, -e 1.08
and a spacing d/A -e 0.15; this produced a directivity of about g dB atI - 0. Note
that. for ihis cawe. the optimum director sad the optimum reflector are both smnatter

SW tan theivelo op.
A Ya-Uds amy of loops with a single reflector (element 1). an excter (the

driven element 2. and several director of equal size b and equal spacing /li is
sAhwn is the inst of Fig. 5-21.0 As in its Counterpart with linear elements. in the
Yagi-Uda amy of Imop the tflectoroy cite l combination scts as a food for a stow

* wave that proples long the array of directors , T loweutorder propagating
wave (mode) exists for directors less than about resonant size (Ob -< 1.0) with spso-
lags less than about a half wavlngt dlo Z 0 .5 ). An army supporting this mode
has an e-re Pattern With a hny polarized electric ke at the mamut .

Ybe prooedure or adiedid a aSW& &rray of l the as for an

d aby ofem . Tbib nsa 84aa • th ps ys1.
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away with fines- elements." The isoated rcelcw-eciser combination is asuallfy Cho.
gem to have aximum directivity in the direction 0 - 0. For example. tde opimized
two4*ntent a&ay described above might be used. The mnber. size, and spacing of
the directors are then adjusted to obtain the desired performance. such assa specified
end-Ir directivity. The maximum end-fire dimetivity is determined by the eectrical
length of the army L/A (Lui the distance from the exciter to the las director). The
larger the number of directors within the length L.. the smaller the electrical sine of
the directors will be for maximum directivity, typically 0.3 S 95 s1.0A

As an example, the directivity of a Yagi-Uda armay or loop with the director
spacing d/k - 0.2.i shown as a function of the number of directors or the lengt
the &ay L/4 in Fg 5-2 1. Two theoretiosi curve and to sets of measured data are
shows. All the results agree to within about I dB. eve though they7 sam fo differeut
Ielector-ciciter combination and slightly different director sie."

*fI Pualuan wal by dthfa d if n aiapurs am Appal4t .in6lb - Ph, LM. lfa/h ad.
dAO IIer ab hatd mBanrqadcin. awD 06 taMAid fir ael bark I^) Table a 5":
1-t 0%A - 5.20 dAA - &I S. ad lb aptmi SM Mel Miiisa I^- Shmeml a" S" (Ii?*;.

-i S -1 0. L dmA/ n O.I MW 0 01 Oafr a h sL/J)
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54 SliP R3 * AP ANTENNA

Fe oea appleatiamm, k i desirable to petitin the Unmll o tod loop astean'
poscily so a to pr v osmeteical mmeUy ire the loop and ita mmoctioam about
a pin perpendicular to the hap. Thi cm often be socamplahed by ofta the wo
aed shielded loap FIg. 522. i - eastl ala s eeii hap wha ee-
nad mrface in symntrial about she yx pkae.',

With reference to R&g 5220. the thickmn of the meta forming the shield is
c stbob svel s depthe thi pevents any direct interaction between the cut*
nealso the internul and t6e eiterand surfm of the sbield. The effecltive teminalt of
the loop item an at the oam of the omall pp AB. The inner onductor ad the

:"
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AMl fins a =i Mi tnmmw =s las o(b Al + sI connecting the SP wM the
101 impegd&§W Zs 10h6, thM stead, load ifmfpedas Z& at the pap a ZS tam.
e by the le h of trasmmisnm e h + b.

The esi,,v ntemin. Fg. S.22s e emily analymd by csmidering the loop.
Fig. 5-221. ad do tramissiaSe. ri. 5-22c. upertely. The Incident AM pro.
*Ane a cumt Ma the atml ssfam of the Shield the cuent iPN th ough the
effetive Impedamom Z&. producing the whage Vb. which for a cecsuically smll loop
on be determined from Eq ($-If) sad (54-13). This voltage is ummitted *vra

nial fin to bams Vs at the Ind impedance Zv.
Other example of %he sheded ioop an sbw is Fig. 5.23. A balanced wenie

Sthe lmp is FW .5-22 is is W S-23 . and ametbd for fedin op i fromt of
a reflaetor iin Fg "-23b.

SOLIO
~COP"AM

-2s

90. S-23 )Sletned PI A wilma wad (b), megmu of I I
wimA. ink rat io plm w Seto.

To illustrate a typical use oa the shielded Iap. comider the electrically smanll
receiving loop placed is an incident electromagnetic plane wave with the wave vector
16m U in Fig. 5-24. The is the same Stowetty s i Fig. 5-5. except that the wrminals
ofte oop ae at the angle 0 - #instad of # - 0. and 0, - w.#, - 0. The loop
Is this example might be an antens in a directiom fnder with the direction of the
bscidet wave to be detennined by placing a null of the fild pettern i ae direction

The voltage at the open.circuited terminals of the electrically mU loop. deter-

mined from the Fouer.eerm snalysis, is Approimately
Vac- j.AIVtsia # - 2 bl~ce ) (5 0)

For many appliations. the -oI tm in Eq. (5-20) is negligible, since b C I for
an electrically small loop; in this event. Eq. (5-20) reducas to Eq. (5-1I) with N - I.

L .5. other applicatiom, ho *ve, this teman my represet a eainifcas oetui-

o/.
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hellon to the repouse. For example. the sensitivity of the atem is die direction
inder is decreased by ths term because it fill in the nulls of the sin 0, fiel paten
(for Ob - &..#t - 0, the minima inthe pattern ameonly 14 dB below the maima).

* .. The seoned term in Eq. (5-20) can be made insignificant by reducing the elc-
'sWa size of the loop Dh- however, this will also decrease the semnivity. since the ame
or the loop, is decred. An alternative is to make this term zero by placiagl the tee.
mlsalsof thelo"pprecisely at OL r/2 (amOe* -O; ica be acomplished by
usanl a shided loop as in Fill. 3-22a or Fig. 5-23&.

6-5 ADDITIONAL TOPICS.

The brevitya(oftireview requiresomis of may interesting topics oncerning lo
antuenns. Is meant years, there has been considerable study of loop enterma in cdome

* . ~progialty to or embedded. mataisJa media such " the ocean. the eath, a pkL
* liTe eleevrical chiaracteristics of loops in these instances can be quite Mosctet from

th of. loops in unbounded free spece, as desmrbed in this review. The mjer appli.
4 eatitesof this wo-k sre in the areas of subsurface commumicatice and deta,:o (gec.

physical pespectina).
The loop antenna near a planar interface "itirtinil two semininfldte material

retion. such as th~e air and the sanhk bas been investigated eatemively. When the
loop is electrically small. it can be spproximated by an elementary msaechic dipole.
and the electfomaognetic field away from the loop can be determined from the classical
analysis of Sommerfeldu If the field near t electrically small loop ia teqired. te
approximation by a magnetic dipole may so longer be adequate. and a loop with a
finite radius and a uniform current mut be comidered.3h For the electrically Irgs
loop near a plna interface. ananamlysia that alloms a nonuniformn current im the loop.
such as the Fourier-scrics analysis for the circular loopY" must be used.

The performance of a loop embedded in a material eamn be altered dnificantiy
by placing the loop in a dielectric covity. swcb ass sphere, to form an humbtad loop.
The electrical site and shape at the insulating cavity and the location of the loop in
the eavilteam be uwed to control the electeumagareuc ield and input imposm ofthe
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CURRENT ANTENNA NEAR-FIELD MEASUREMENT RESEARCH AT THE GEORGIA /
INTITUTE OF TECHNOLOGY

Virginia V. 3ory*, Edw&-d B. 3y-, W. Marshall Leacn, 3r.0

ABSTRACT

Current progress In antenna near-field measurement techniques is
presented. Emphasis is given to probe compensation for the spherical
measurement system and to correction for probe position error in the planar
measurement system. Also discussed are the recent design, implementation and
validation of a cylindrical near-field range.

INTRODUCTION

The Georgia Institute of Technology has been active in the research and
developmett of near-field measurement techniques for over a decade and has
had an operational planar near-field scanner since 1968. Recently a cylindrical
near-field range has been designed, implemented, and validated. The
implementation of a spherical near-field range currently is under way.

Since each of the planar, cylindrical and spherical near-field measurement
systems has advantages for particular applications, research continues in each
coordinate frame.. The planar measurement system, for example, is suitable for
directive antennas with pencil beam radiation patterns, while the cylindrical
measurement surface is appropriate for fan beam antennas with narrow beams
in the vertical direction. The spherical measurement system, which enjoys the
distinct advantage of providing a complete measurement surface, is suitable for
omni directional antennas.ln each case the measurements are carried out in the
near-field of the antenna under test; thus, unless an ideal probe is used, the
effects of the probe antenna need to be taken into account.

A method of computation of far-field radiation patterns from probe
compensated near-field measurements may be described briefly as follows. In
each coordinate system, the fields radiated by the antenna under test and the
probe antenna are expressed in terms of the appropriate (plane, c lindrical,
spherical) wave expansion. The Lorentz reciprocity theorem is then utilized to
obtain coupling equations' between the unknown fields radiated by the test
antenna and the known fields of the probe. The unknown mode amplitudes are
determined from the coupling equations, and finally the far-field patterns of thetest antenna are calculated from the mode amplitudes 1, 2)

DESIGN. IMPLEMENTATION, AND VALIDATION OF A CYINDRICAL NEAR-FIELD.
RANGE

/hen a portion of Georgia Tech's Engineering Experiment Station was
relocated to a site fifteen miles from the main campus, continued use of the
centrally located near-field range became impractical. An automated near-field
measurement system was designed employing cylindrical geomety. Automatic,
digital recording of the near-field data is accomplished using a microprocessor
based controller which handles the stepping and scanning of the antenna end
Probe positioners, and by using a microcomputer with parallel interface, to read

*Engineering Experiment Station, *,#School of Electrical Engineering, Georgia
Institute of Technology, Atlanta, .Zeorgia 30332, U.S.A.
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the VlD outputs of the amplitude, phase, and synchro displays at the desired
P/ sample poInts as Indicated by the positioner programmer. The measured near-

field data ma) be stored on the microcomputer's floppy disk and later transferred
* I to a minicomputer via a serial data line after the measurements are complete. It
I ,\ -Is also possible to send the data directly to the minicomputer as the

measurements are being made.

Computer programs based on the analysis outlined in 13 J have been
written In FORTRAN to convert cylindrical near-field me.surements tc far-field
patterns. Experiments have been run on two array antennas as part of the
validation process with comparisons made between computed and measured far-
field patterns. The effects of prohe compensation and measurement surface
truncation have been studied. Presently a cylindrical near-field measurement
program which will provide relative far-field phase data as well as amplitude data
is being developed.

PROBE COMPENSATION FOR THE SPHERICAL MEASUREMENT SYSTEM

" :The implementation of a spherical near-field range on the main campus is
being undertaken. However, the probe correction for the spherical scanning

* geometry is difficult. Not only is the mathematical basis complicated, but also
numerical implemenzation is neither straightforward nor efficient. An alternate
derivation of the spherical surface near-field coupling equation is being studied
in an effort to simplify these problems.

The spherical near-f!eld measurement surface is extremely attractive for
two reasons. First, the measurements can be performed using conventional far-
field antenna positioner!. Second, the calculated patterns cover up to 411
steradians rather than some limited angular region of space. The coupling
equation between a test antenna and a measuring probe for the spherical
geometry was first derived in[ 41- SimFlifications to this theory for single mode
probes and efficient numerical algorithms for data reduction were developed in

jI [ . The single mode probe assumption greatly simplifies the probe correction by
eliminating all terms but one in the double summation of spherical wave
harmonics represc..ting the principal polarization component of the probe
response and all terms representing its cross-polarization component from the
coupling cquation. This essentially removes the need for probe correction
because the probe measures only a single component of the near-field of the test
antenna.

i Single mode probes can be very difficult to fabricate, for they must have
high polarization ratios. In addition, they can have a very low gain, e.g. in caseswhere the probe is designed to respond to a radial near-field component. The

frequency sensitivity of these probes is also a problem. Small changes in
frequency can cause them to no longer act as a single mode probe. Thus it may
be necessary to design the probe for each specific test frequency.

* The problems associated with single mode probe fabrication can be
circu--.nted by neglecting the probe compensation problem altogether.
Compared to the planar and cylindricai surfaces, the spherical scanning surface is
the least sensitive to probe correction, and many have reported accentable results
by neglecting it. However, a simplified probe correction scheme which does not
require a single mode probe is desirable. This has been a recent topic of research
at Georgia Tech. Several approaches to the problem have been investigated. The

I "., most promising solution has shown that the polarization ratio of the measuring
probe, not its directional characteristics, Is the majo" factor in probe correction for
the spherical surface. Although this work is not yet complete, it appears that ilk
will be possible to calculate tne two principal plane far-field pattern components

,S. of the field radiated by the test antenna while correcting for the polarization



rat'o of the probe. A significant anticipated result is that these pattern
compontnts can be calculated as a summation of scalar tesseral harmonics rather
than ve'tor harmonics over the far-field angular coordinates. This research
would be completed within the next six months.

SIMPLIFIED PRCBE POSITION ERROR COMPENSATION

A simpilfied probe position error compensation algorithm recently has
been developed for planar near-field measurement systems. The t-chnique
compensates for known probe position errors as I2rge as two wavelegths in the x,
y and z positions. This simplifiea technique was an outgrowth of the rigorous
theory developed by Corey and Joy at Georgia Tech in 19801 6. Current research
is directed toward applying the simplified probe position error compensation
tecl-n'que to spherical surface near-field measurement systems.

APPROXIMATE TECHNIQUES FOR NEAR-FIELD PROBE POSITION ERROR
COMPENSATION

Error analyses conducted at Georgia Tech [ 7,81, the National Bureau of -
Standards[ 9,101 and the European Space Agen.y 111,121 have shown that the
positioning accuracy requirement for planar, cylindrical and spherical near-field
measurement systems is on the order of one hundredth of a wavelength. This
requirement severely limits the upper frequency usage of the near-field
measurement technique. One approach to overcoming this limitation is to
compensate for the position error by including the position of each me-surement
in the near-field to far-field computation process. This requires two additions to
a near-field measurement system. First, a position indicating system must be
added to the near-field apparatus to ac:urately determine the position of the
near-field probe or the antenna under test, or both, depending on the type of
near-field system being used. An example of a very high accuracy position
indicating system is the commercially available interferometer system which
m'- sures distance tu within one quarter of a wavelength of its operating ;ight.
Second, position error compensation software must be added to utilize thej / position error information in the far-fieJo pattern computation sequence. This
paper addresses this second aspect of ;sition error compensation for planar
near-field measurement systems. Specifical;- - class of approximate tecnniques
has been developed which is computationally efficient as compared to the earlier
technique of Corey and Joy[ 131

THE K-CORRECTION TECHNIQUE

If the assumption is made that all n-ar-field energy is propageting in the
direction of the main beam of the antenna under test, kMB , then the fields
existing at equally spaced points on the ideal measurement plane (xi, Yi, 0) can be
easily calculated from the measurements taken at the points (xk, Yk, zk), located
on a nearby surface. The relationship between the field patterns at these two
points is given in terms of the familiar plane wave propagation equation as

(xi, Y3, 0) = E(xk, Yk, Zk) exp(-j 'RMB "-)

where
rE ri- rk (Xi- Xk) ax (Yi- Yk' ay+ (0-Zk)iz

The field values ,vith the location ri closest to the line passing thruugn the the
desired field value location ?i in the kMB direction is used to determine the field

j value at the desired location.

This technique has been applied to the following example. Figure I
shows a normalized out-of-plane probe position error for a planar near-field

-- I.
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measurement system. The maximum value of this error is shown as 1.0. Effects of
varying this maximum value of probe position error on the computed far-field
patterns, with and withou' position error cimpensation will be shown. Figure 2
shows the far-field pattern of the antenna under test computed from near-field
measurements with no probe position error. Figures 3 and 4 show the far-field
patterns of the antenna-under-test calculated from near-field measurements
made on the measurement surface of Figure I with maximum position error of " .
0.1 wavelength and 0.5 wavelength respectively. These figures show rapid
deterioration of the far-field pattern accuracy with increasing position error. In 'y

these calculations position error compensation was not used. Complete -
restoration of these patterns (down to a level of -40 dB) is possible for the case of
2.0 wavelength or less maximum near-field probe position error by using the K-
correction technique described above. The accuracy of this calculated pattern is
seen to be excellent for this hypothetical case, where kMB is assumed to be
known accurately. Computation time for this 64 by 64 point near-field data set is
less than five seconds (CDC Cyber 74).

The K-correction technique for position error compensation, _ which
assumes the near-field being measured propagates in the sing!e direction kMB is
now extended. Let it be assumed that the near-field contains components
propagating in N directions simultaneously. Let these directions be kn, I i n _C N.
The choice of the N directions of propagation, in practice, would be the directions
of propagation of the highest far-field pattern levels. The Nyquist sampling
theorem applied to high gain antennas shows that the main beam region of the
far-field pattern can be represented by 4 to g plane waves depending on the
aperture efficiency of the antenna. The specification of from 4 to 9 plane waves
spread equally throughout the main beam region would be a good choice for the
N directions. Note that the exact direction of propagation of the main beam is
not required. A contiguous group of N near-field measurements, usually within a
circular or square region of the measurement plane, is represented as- a
s, mmation of N plane waves, each propagating in one of the specified N, kn
directions. Let E(rk), I - k , N be the set of N measured values located at the N
points rk, I <k < N. Theie fi'eld values may be written in terms of N plane waves
with unknown complex amplitudes A (kn), l< n < N as

*, . A(rn) exp(-j kn -k), I _kj N
n=I

:is set of N simultaneous equations may be solved for the unknown plane wave
itudes A ('n), I ! n .< N and tx, used to calculate field values elsewhere and

ularly at the desired equally spaced point on a nearby planar surface tj as

N
E(ri) ( I rkn) exp(-j lin j)

n=[
is latter evaluation is normally cnly carried out for a few points near the center

of the N point group. A new N point group is then selected, usually overlapping
the previous group, and the above process repeated until all equally spaced
planar field points are determined. The extended K-correction technique with
N9 where all 9 plane wave directions are within the main beam region has
shown to give excellent results when the main beam direction is known to within
one main beam beamwidth.

Work at Geogia Tech continues to fully explore %-e limitations of the
extended K-correction position error compensation technique and to apply
similar techniques to the cylindrical and spherical near-field measurement
systems.
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introduction

This paper reports on research being conducted at Georgia Tech an the

spherical surface near-field measurement technique. The popularity of the

* spherical surface near-field measurement technique is Indicated in the list of

near-field ranges as shown in Table 1. This popularity Is* In large part, due

to the availability of the Scientific Atlanta Spherical Neatrield Antenna

Analyzer. Specifically, the paper reports on the status of (1) the Georgia

Tech spherical surface near-field range, (2) -comparison of non-probe-

compensated spherical surface near-f ield to far-f ield transformation

techniques, (3) a probe position error compensation technique for spherical

surface measurements, and (4) alternative spherical surface near-field to far-

field transformations which incltde probe compensation.

* Georgia Tech spherical Surface near-Frield/Far-Field Mange

]Figure 1, showa pictoral diagram of the Georgia Tech spherical surface

near-fieold/far-f ield antenna measurement range located in the School of Elec-

trical Engineering. The range is located In a tapered anechoic chamber of

dimensions of 40' long by 24' wide by 16' high. The instrumentation and

* - *This work is being supported by the Joint Services Electronics Program.



- -~--. . .. - -

absorbing mategial Wee designe" for single ben operation fems 8 to 12 Wa. -G a

The facility is Used both for research and instruction ia astn measure-

meats, antennas, end radomes. The range is now fully functional in the manual

mds and will soon be completely interfaced to the mlcronova computer for

automated amplitude, phase. and polarization data collection. Near-field to

fag-field transformation is carried out on other campus computers.

Comparison of Scn-1robe-C<mpenatd Spherical sarfnac ear-Field to iar-rield
Transformation Techniqus

Comparison of two tachniqus for non-probe-compensated spherical surface

near-field to far-field transformation are being opductsd. The two tech-

niques age (1) the spherical mode expansion technique, and (2) the vector-

diffraction surface-integration technique.

The spherical node expansion technique has become the standard technique

fog spherical surface near-field to far-field transformations. The advantages

of this technique ate (1) only the tangential components of the electric field

need be measured an the spherical near-field surface, and (2) the spherical

mode expansion formulation allows for the natural incorporation of probe

copesation. The disadvantages of the spherical mod" expansion technique

are a direct result of the mathematical complexity of the spherical sdf

descriptions. The disadvantages are (1) lengthy computation time, (2) lengthy

omptet algorithms, and (3) difficulty of probe position error compensation.

The vector diffraction surface-integration technique Is a very old tech-

nique which is one of the standard techniques used to calculate far-field

antenna patterns fra antenna aperture fields end from the fields an the outer

surface of tgdomes. The for-field patterns are calculated by an integration
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of the most-fils specified on a surface Which encloses the antenna under

test. Umfoctematelyt both the tangential electric md magnetic fields an the

enclosing surface meet be measuied. If the free space relation between the

electric and magnetiO fields on the enclosing surface Is made, the resulting

near-field to far-field transformation is simple. The advantages of the

vector diffraction surface-integration technique are (1) mathematically and

algorithmically simple, and (2) easy compensation for probe poeitiod ctor.

The disadvantages are (1) assumption of free space relationship between the

electric and magnetic fields, and (2) difficulty of Lncorporating probe

response.

Probe Positio srror .Compnsation Techuique for Spbetical Surface Uasr-rield
'- ,"rin-."nt

Several theoretical, computer simulation and empirical studies have been

Sconducted to determine the requirements for position accuracy for near-field

measurements. The most stringent positioning requirements for the spherical -

surface systems are approximately one two-hundredth (1/200) of a wavelength

/ for the radius and offset between the two axes of rotation. Thus position

errors should be less than +.OC6 (±.015 cm) at 10 Gz."

Zxperience gained with probe position error compensation for planar

surface near-field measurements is being applied to spherical surface near-

field measurements. The vector diffraction surface-intogration technique

easily accomodate& positional errore as the measurement surface can take on

any shape. The assumed spherical surface is distored to coincide with the .

* atual ourface over which measurements are preformed. The surface used in the

- . surface-integration is, therefore, the actual surface and position error Is

: -3-
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gem-ed 6 The 0009e0 iclMode ex9penaio technique eaMOt easily 400oomeodat. a

toe-spherical, measurement surface. An approximate probe pos ition error tech-

mique, called the R-correct ion tchnique, has been developed In which all

eat-field energy to assumed to propagate In the radial direction for the %I.

uPOse of probe position error compensation. Sack near-field samPle Is

assumed to represent the amplitude and phase of a plane wave propagating io

the local radial direction. Ideally Positioned amnple@, those at integer

multiples of the two angular sample Increments and at constant radius, are4

determined from the measured sample by evaluating the plane wave at lbe ideal

2osition. This 3-correction technique Is* thus, a phase only correction, but

han proven highly successful In our initial investigations. fb. 3-correction

technique can be upgradeds just an in the planar surface case, to rem"v the

assumption of radial only propagation. The modified 3-correction technique

uses several neighboring near-field measurements and their true positions to

estimate the direction of propagation of the local* field aNd ses the esti-
mated diction rather than the assumed radial direction for probe position

Compensation.

Both techniques for probe position error compensation rely on accurate

probe position data for each near-field measuredent. Normally, this position

Information is obtained from an auxilliary position measurement systes. 1

Isb-cssae sherica oUrrae Uesr-ield to Par-Field frnsfomtimteebiusate

SVo techniques for the probe response compensation for spherical surface

near-field to far-field transformation are being developed at Georgia Tech.

The first technique is a rigorous rederivation of spherical near-field

-4-1



measurment cupling using basis functions other then the spherical sofe

expansion. This work is being conducted by W. K. Leach, jr. The second te--

mique ise em appraimate technique to be used In the vector ditfraction

iurfeoe-iategr atla technique.

Who effect of the near-field probe directional respose Is represented,

as in planar surface near-fieild measurements, as the convolultion, of the

probe'* planar aperture field and the local near-field measurement surface

field. It is found t|at compensation for the near-field probe response Is

dependent on the ratio of spatial area represented by each near-field

measurement sample and the spatial area of the near-field probe.

Whistim ati becomes large when the radius of the spherlcal near-field

measurement surface beomes significantly larger than the radius of the

antenna under test aperre. This ratio would be approxinately 25 for a

measurement radius 10 times larger than the radius of the antenna under test.

and a one wavelength square near-field probe. ror such large ratios, the

oe ects of the probe directional response becom Insignificant. The watio is

minimum when measurements are performed at minimum distances. This minimum

ratio would be approximately one-fourth (1/4) using a one wavelength square

probe. For such mall ratios, the convolution of the probe spatial response

nd near-field measurements in the sampling area I significant and Included

In the far-field computation.

Reseach is undeorway at Georgia Tech to increase the accuracy and

computational efficiency of the spherical surface near-field measurement

technique.

antnnaundr tst perure Thn rti ..o.* d be**.*.rO .* * y * ,. ora ..-

........... 0tie age hn h adu f h nenaude et.'-.



U

us

300

gcpc

II
At1

isi



Joint Services Electron ics Program

DA.AG29-81 -K-0024

Ap il 1# 1983 -march 31. 1984

Publications

INO-DInU5IORL SIGNAL PROCSING AmD sMA~
AMD

A~~ AN AM LICAflO16 CW MaC"hMA~GNIC

f1RUES

June 1984
School of Electrical Euigineet 1mg
Georgia Institute of Technology

Atlanta, Georgia 30332

Approved for public release.
Distribution unlimited.



t b e suplment tothe annual report consists of the following printed
tbeof contents and a set of microfichbe containing all papers and theses

produced with .OSP support and published during the period April 1, 1963
through March 31, 1964.

this form of reporting io modelled after that Introduced by the Stanford
EletroicsLaboratories for the same purpose. The result is a compact pre.-

sentation of a large quantity of information which can be produced such more
economically than printing. On the other hand, it is realized that microfiche
Is less convenient than a printed document. Therefwre, those who are
Interested in particular reprints may contact R.W. s.-'z:*- to requeet, a zerac
copy of any of the listed papers.

11. List of Repr ints

The reprints are organized by work unit as in the combined Annual/Final
Report on this contract. Numbers in parenthesis indicate reference to fiche
number and page. The page numbers are coded to the work unit numbers. Note
that fiche #7 contains this printed index.

2.1 TWO-onINEOWNL SIGIAL PROCESIG AIM 82MAGE

wool Constrained Iterative Signal. Restoration Algorithms
R.N. Marserea and R.W. Schafer

A.G. Katsagqelos and R.W. Schafer, 'Iterative Deconvolution Using
Several Different Distorted Versions of an Unknown Signal,* Proc. 1983
Int. Conf. on Acoustics, Speech, and Signal Processing, Boston, pp.
659-662, April 1983. (Fiche 11, pp. 1-1 to 1-4.)

K.R. Hayes and L.W. Schafer, "On the Dandlimited Extrapolation of
Discrete Signals,* Proc. 1983 Xnt. ConE, oln Acoustics, Speech, and
Signal Procesing, Boston, pp. 1450-1453, April 1983. (Fiche 11, pp.
1-5 to 1-B.)

10#2 Spectrum Analysis and Parametr ic Modelling
L.W. Schafer mid R.N. Nersereau

R.N. Mersereau, E.W. Brown, and A. Guessoum, 'Roy-Column Algorithms
for the Evaluation of Multidimensional DrTs on Arbitrary Periodic
Sampling Lattices,' Proc. ZEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, pp. 1264-11267, Apr. 1983. (Fiche #1, pp. 2-1 to
2-4.)

R.N. hrsereau, wDimensionality Changing Transformation with Non-
Rectangular 3ampling Strategies,* in Transformations In Optics,
(Rhodes, Saleh, Fienup, eds.) SPIE Bellingham, 1983 (invited). (Fiche
11, pp. 2-S to 2-9.)

A. Cuessoum, 'Fast Algorithms for the Multidimensional Discrete
Fourier Transform,* Ph.D. Thesis, Georgia Institute of Technology,
MRch 1984. (Fiche #1, pp. 2-10 to 2-90 and Fiche #2 pp. 2-91 to
2-170.)
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8.3. ~isp 'Genralization of One-Dimensional Algorithms for the
Evalustiom of Multidimensional Circular Convolutions and nps,e H.
lbesis, Georgia Institute of Technology, December 1983. (Fiche #2,
pp. 2-171 to 2-188 and rich* 63p pp. 2-189 to 2-284.)

P.A. Maragose RN. M rsereau, and R.W. Schafer.- "Tuo-Dimensional
Linear Predictive Analysis of Arbitrarily Shaped Re~ions," Proc. IEE!
Tnt. Conr. on Acoustics, Speech, and Signal Processing, pp. 104-107,
Apr. 1983. (Fiche #4, pp. 2-28S to 2-28e.)

=03 Signal Reconstruction From Partial Mhase and Magnitude Information,i N.E. Bay**

P.L. Van Boys, MN.. Bayes, 3.5. Lim, and A.V. Oppenhein, 6Signal
Reconstruction feam Signed Fourier Transform Magnitude," IEEE Trans.
Acoust., Speetch, and Signal Processing, ASSP-31, pp. 1286-1293, Oct.
1983. (Fiche 84, pp. 3-1 to 3-8.)

N.S. Bayes and T.P. Quatiari, 'Recursive Phase Retrieval Using
Boundary ConditionsfO J. opt. Sac. Am., Vol. 73, pp. 1427-1433, Now.
1983. (Fiche #4, pp. 3-9 to 3-1S.)

N.!. Hayes, "The Representation of Signals in Terms of Spectral
Amplitude," Proc. 1983 Int. Conf. on Acoust., Speech, and Signal
Procss5ing, pp. 1446-1449, April 1983. (Fiche 64, pp. 3-16 to 3-19.)

V164 Maltiproceasior Architectures for Digital Signal Processing
T.P. Darmusli, 121

00ptiual Implementation of Flow Graphs on Synchronous multi-
processors 1 " T.P. Barnwell, III, and D.A. Schwartz, Proceedings of
Asilomar Conference on Circuits and Systems, November 1983. (Pich
#4, pp. 4-1 to 4-7.)

mus Ivo-Dimenional Optical Storage aid Processing
F.M. Gaylord

Noharamp M. G. and Gaylord, T. K., *Rigorous Coupled-Wave Analysis of
Grating Diffraction -- E Mode Polarization and Losses,* Journal of the
Optical Society of America, vol. 73, pp. 451-45 April 1983. (Fiche
64, pp. S-1 to S-5.)

Moharamp N. G. and Gaylord, T. X., "Three-Dimensional Vector Coupled-
Wave Analysis of Planar-Grating Diffraction,* Journal of the Optical
Society of America, vol. 73, pp. 1105-1112, September 1983. (Fiche
K 4, pp 5 -6 to S5-13.)

Baird, W. Z., Moharsu, M. G.p and Gaylord# T. It, 'Diffraction
Characteristics of Planar Absorption Gratings,* Applied Physics 3,
vol. 32, pp. 15-20, September 1983. (Fiche 64, pp. 5-14 to 5-19.)

Pbbaram, M. G., Gaylord, T. K., SincerbaK, G. T., Verlich, ff. and
Tung, S., "Diffraction Chsacterist~cs of Surface-Relief Dielectric
Gratings," (Abstract) Journal of the Optical Society of America, vol.
73, pg. 1941, December 1983. (Fiche 64, pp. 5-20.j
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Nobaram, N. 0. and Gaylord, T. I., 'Diffraction of Finite sem by Di-
electric Gratings,' (Abstract) Journal of tke Optical SoietX of
America, vol. 71, pg. 1941, December 1983. (Fiche #4, pp. 5-20.)

Mrsalebi, K. N., Guest, C. Co, and Gaylord, T. K., *Optical Truth-
* Table look-Up Processing of Digital Data,' (Abstract) Journal of the

22tical society of America, vol. 73, pg. 1951, December 1983. (Fiche( 04, pp. 5-21.)

Daird, W. It., Gaylord, To K., and Noharam, N. G., ODiffraction
Efficiencies of T'ransmission Abborp~ ion Gratings,* (Abstract) Journal
of the Optical Society of America, vol. 73, pg. 1889, December 1983.
-(Fiche #4, pp. 5-2;t.)

Mirsalehi, N. N., Guest, C. C., and Gaylord, T1. K., 'Residue Number
system Holographic Truth-Table Look-Up Processing:z Detector Threshold
Setting and Probability of Error Due to Amplitude and Phase
Variations,' Applied Optics, vol. 22, pp. 3583-3592, November 15,
1983. (Fiche #4, pp. 5-23 to 5-32.)

Guest, C.C., OfHolographic Optical Digital Parallel Processing,' Ph.D.
Thesis, Georgia Institute of Technology, November 1983. (Fiche #4,
pp. 5-33 to 5-68 and Fiche 15, pp. 5-69 to 5-166 and Fiche #6, pp.
5-167 to 5-184.)

3 H ybrid Optical/Digital signal Processing
W.T. Rhodes .

* J.N. Mait and V.T. Rhedes, 'Dependent and Independent Constraints for
a Multiple Object~ve Iterative Algorithm,' in Signal Recovery and
bynthesis with Incomplete Information and Partial Constraints
(Technical Digest) (Optical Society ot America, 1983), pp. TEt.14-1
through THA4-4. (Fiche #6, pp. 6-1 to 6-4.)

W.T. Rhodes, A. Tarasevich, and N. Zepkin, 'Complex Covariance matrix
Inversion with a Resonant Electro-Optic Processor,' in Two-Dimensional
Image and Signal Processing, G. Morris, ed. (Proc. SF13, Vol. 386,
1983), pp. 197-204. (Fiche #6, pp. 6-5 to 6-12.)

W.T. Rhodes and H. Koizumi, 'Image Enhancement by Partially Coherent
Imaging,' in Proceedings of the 10th International Optical Computing
Conference (IEEE Computer Sovniety, 1983, IEEE Order No. 83C111880-4),
pp. 32-35. (Fiche #6, pp. 6-13 to 6-16.)

V.T. Rhodes, 'Hybrid Time- and Space-Integration Method for Computer

Holography,' in International Conference on C~mputer-Cenerated Rolo-
graphy,. S. Lee, ed. (Proc. SPIE, Vol. 437, 1983), pp. xx-x. (Fiche
06, pp. 6-17 to 6-22.)
W.T. Rhodes, 'Acousto-Optic Algebraic Processors,' In Peal-Time Signal
Processing VI, K. Bromley, ed. (Proc. SIZ, Vol. 431, 1983), pp. xx-
xx. (Fiche #6, pp. 6-23 to 6-33.)

N.J. Caulfield, L.A. Neff, and W.T. Rhodes, 'Optical Computing: The
Coming Revolution in Op.tical Signal Processing,' Laser Focus/Electro-
Optics Magaxine, Novemiber 1983, pp. 100-110 (Inviter-,' . (Fiche 06, pp.
6-34 to 6-42.)

a

. .

a6 ' .-.- ,. . . . '_ -* 1 .2 - ., I , - -



107 UleUMtzma UG lbas"C1411tO i* the ?is DOOM&
0.5 Neth

6.5. ftith and L. f. An, *Loop Antennas for Directive Transmission Into
a Material Half Space,' Radio Science, vol. 18, no. S. pp. 64-674,
8.pt.-Oc-t. 1953. (fiche 07, pp. 7-1 to 7-11.)

R.I. basman and G.S. smith, *electtic Field Probes A aw lowie,
(Invited Paper), 33LP3 Trans. Antennas and Propagation', vol. AP-31, no.
S, pp. 71%.-718, Sept. 1983. (riche 07, pp. 7-12 to 7-20.)

U.S. Smith, -Directive Properties of Antennas for Transmission Into a
Material Half Spacer' IEft Trans. Antennas and Propagation, vol. AP-
32. no. 3. pp. 232-246, March 1984. (Also presented at the 1983 IE3E
Antennas end Propagation Society International Symposium and Naticnal
Radio Science Meeting (URSI), Houston, TX, pg. 7, May 1983. (Fiche
07. pp. 7-21 to 7-35.)

6.8. Smith, *Limitations on the Size of Miniature Electric Field
Probes,' IEEE Trans. Microwave Theory and Techniques, volume '4IT-32,
no. 6, pp. 594-600, June 1984. (Fiche 07, pp. 7-36 to 7-42.)

0.9. Smith, OLoop Antennas,* in Antenna Engineerinq Handbook, (R.C.

Johnson and H. Jasik, Edo., New York: McGraw-ill, pp. 5-1 to 5-24.I
1984. (Fiche 07, pp. 7-43 to 7-67.)

06~ Automated Radiation Measurements bit Reat and Faz-Field
Transformations
3.5. Joy

V.V. Jory, E.g. Joy, and N.M4. Leach, Jr., 'Current Antenna Near-Field
Measurement Research at the Georgia Institute of Technology,'
Proceedinqs of the 13th European Microwave Conference, Nurnberg. West
Germany, September 5-8, 1993, pp. 8-23, 8-28. FViche 47, pp. 8-1 to
8-6.)

Z.5. Joy, 'Spherical. Surface Near-Field Measurements,' Proceedings of
the Antenna Measurement Techniques Association 1983 Meetinq,
Annapolis, RD, September 27-29, 1983, pp. 23-1, 23-0. (liche 07, pp.
8-7 to 8-12.)

The last five pese of Fiche #7 conitain the above list of
publications.
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